Quantum Simulation of Geometry (and Arithmetics)

> José Ignacio Latorre ECM@Barcelona CQT@NUS

Isfahan, September 2014

Outline

- Motivation
- Quantum Simulation of Background Geometry
- Quantum Simulation of an Extra Dimension
- Quantum Simulation of Topology
- Primes

Quantum Computation

What?

Why?

When?

Where?

Who?

Description of Nature

Fist Quantum Steps of Human Kind

Validation of theory

Exact Calculations

Integrable models (from Hamiltonian), CFT (from symmetry), ADS/CFT (from conjecture)

Approximate methods

Perturbation theory, toy models, non-perturbative techniques,...

Numerics

Monte Carlo, Tensor Networks (MPS, PEPS, MERA,...)

other powerful instruments?

Analogue Simulation

 \approx

Theory of interest

System under control

 $H(\{\alpha\}) \approx H'(\{\lambda\})$

controlled parameters

Analogies have to be analyzed very critically

Why? Quantum Simulation is an intelligent window to QC

Quantum Computer

General purpose quantum computation Shor's factorization algorithm Oracle problems, NAND trees, ... Few problems, few algorithms!

Quantum Simulator

Efficient analysis of specific quantum problems Explore new Physics

Experimentally achievable

Classical Computer

Tensor Networks strategies: PEPS, MERA Monte Carlo

Not sufficient

Quantum Simulation

Why \rightarrow What?

- Q Simulation of models beyond classical simulation
- Q Simulation of criticality, frustration, topological order,...
- Q Simulation of non-abelian gauge theories
- Q Simulation of unphysical models, Klein paradox, Zitterbewegung,...
- Q Simulation of gravity, geometry, topology

Where?

- Ion traps
- Cold gases
- Molecules, solids, graphene, ...

Quantum Simulation

of

Gravitational Backgrounds

Dirac equation on a square lattice

 $i(\gamma^0\partial_0 + \gamma^1\partial_1 + \gamma^2\partial_2)\psi = 0$

Can we simulate the Dirac equation on optical lattices?

Can we simulate curved spaces?

O. Boada, A. Celi, M. Lewenstein, JIL

Dirac Hamiltonian in 2+1 dimensions

$$i\partial_{t}\psi = H\psi = -i\gamma_{0}(\gamma_{1}\partial_{1} + \gamma_{2}\partial_{2})\psi$$
$$i\gamma_{0}\gamma_{1} = -i\gamma_{2} = \sigma_{x} \qquad i\gamma_{0}\gamma_{2} = i\gamma_{1} = \sigma_{y} \qquad i\gamma_{1}\gamma_{2} = i\gamma_{0} = i\sigma_{z}$$
$$H\psi = -(\sigma_{x}\partial_{x} + \sigma_{y}\partial_{y})\psi = 0$$

$$H = \int dx \, dy \, \psi^{\dagger} H \, \psi$$

Discretized Dirac Hamiltonian

$$\mathbf{H} = \frac{1}{2a} \sum_{m,n} \left(\psi_{m+1,n}^{\dagger}(\sigma_x) \psi_{m,n} + \psi_{m,n+1}^{\dagger}(\sigma_y) \psi_{m,n} \right) + h.c.$$

SU(2) Fermi Hubbard model

Dirac equation in curved space-time

 $\gamma^{\mu} D_{\mu} \psi = 0$

١

If there exists a timelike Killing vector (time translation invariance in certain coordinates)

there exists H conserved and well defined

Sufficient condition

$$\partial_t g_{\mu\nu} = 0$$

$$H = -i \gamma_t \left(\gamma^i \partial_i + \frac{1}{4} \gamma^i w_i^{ab} \gamma_{ab} + \frac{1}{4} \gamma^t w_t^{ab} \gamma_{ab} \right)$$
$$H = \int \sqrt{-g} \, dx \, dy \, \psi^\dagger \gamma_0 \gamma^t H \, \psi$$

Rindler space-time

$$ds^{2} = -(Cx)^{2}dt^{2} + dx^{2} + dy^{2}$$
$$e^{0} = |Cx|dt \qquad e^{1} = dx \qquad e^{2} = dy$$

Steady Rindler observer is an accelerated Minkowski observer

Rindler is the near horizon limit of Schwarzschild black hole

For any metric of the form

$$ds^{2} = -e^{\Phi(x,y)}dt^{2} + dx^{2} + dy^{2}$$

The lattice version turns out to be

$$H = \frac{1}{2a} \sum_{m,n} J_{mn} \left(\psi_{m+1,n}^{\dagger} \sigma_x \psi_{m,n} + \psi_{m,n+1}^{\dagger} \sigma_y \psi_{m,n} \right) + h.c.$$

$$J_{mn} = e^{\Phi(am, an)}$$

geometry = energy cost for jumping to a nearest neighbor

Site dependent couplings!

Discretized Dirac equation in a Rindler space

$$H = \frac{1}{2a} \sum_{m,n} c m \left(\psi_{m+1,n}^{\dagger} \sigma_x \psi_{m,n} + \psi_{m,n+1}^{\dagger} \sigma_y \psi_{m,n} \right) + h.c.$$

Experimental options

- superlattice techniques
- laser waist

Quantum Simulation

of

an extra dimension

dimensions = connectivity

D+1 dimensions can be simulated in D dimensions by tuning appropriately the nearest neighbor couplings

O. Boada, A. Celi, Lewenstein, JIL

Dimension

$$H = -J \sum_{\vec{q}} \sum_{j=1}^{D+1} a_{\vec{q}+\vec{u}_j}^{\dagger} a_{\vec{q}}^{\dagger} + h.c.$$

$$\vec{q} = (\vec{r}, \sigma)$$

$$D + 1$$

Species

$$H = -J \sum_{r,\sigma} \sum_{j=1}^{D} \left(a_{\vec{r}+\vec{u}_{j}}^{(\sigma)\dagger} a_{\vec{r}}^{(\sigma)} + a_{\vec{r}}^{(\sigma+1)\dagger} a_{\vec{r}}^{(\sigma)} \right) + h.c.$$

$$\lim_{j \neq m} \sum_{r,\sigma} \sum_{j=1}^{D} \left(a_{\vec{r}+\vec{u}_{j}}^{(\sigma)} a_{\vec{r}}^{(\sigma)} + a_{\vec{r}}^{(\sigma+1)\dagger} a_{\vec{r}}^{(\sigma)} \right) + h.c.$$

Bivolum

State dependent lattice/On site dressed latticeTwo 3D sub-lattices are connected via Raman transitions

$$J_{bilayer} = \frac{\Omega}{2} \int d^{2x} w^*(\vec{x}) w(\vec{x} - \vec{r})$$

Exponential decay of Wannier functions suppresses undesired transitions

Boada, Celi, Lewenstein, JIL PRL

Single particle observable:

Kaluza-Klein modes

Single particle correlators take contributions from jumps back and forth to other dimensions in the form of exponential (KK) massive corrections

Many-body observables:

Shift of phase transition point

interpolates between dimensions

Quantum Simulation of topology

Quantum Simulation of boundary conditions

Non-local interactions can be artificially generated

O. Boada, A. Celi, M. Lewenstein, J. Rodríguez-Laguna, JIL

Boundary conditions

$$H = J \sum_{i=1,\dots,n-1} \sigma_i^x \sigma_{i+1}^x + J' \sigma_1^x \sigma_n^x$$

Three ways of create the boundary term:

- Bend the physical system on itself
- Create a non-local interaction
- Add an "extra" dimension

Adding extra dimensions (as a species) retains locality of interactions

1-D optical lattice with 2 species can be turned into 1 species on a circle

change of species (ex: local action of Raman lasers at the boundaries)

Ex: Frustration from boundary condition on a chain

$$H = \sum_{1}^{n} \sigma_{i}^{x} \sigma_{n}^{x} + \cos(\theta) \sigma_{n}^{x} \sigma_{1}^{x} + \lambda \sum_{1}^{n} \sigma_{i}^{z}$$

Entaglement entropy jumps

Or 4 species

Torus vs Klein bottle: Hubbard model

On one atom?

Proposals for Quantum Simulation of basic Geometrical concepts

GeometrySite-dependent couplingDimensionalityConnectivity via change of speciesTopologySite depending species coupling

Quantum Simulation is the natural avenue for QM now

What will a full Quantum Computer be used for?

Build a Quantum Computer

Break Classical Cryptography

Use Quantum Cryptography

Idle Quantum Computer?

Quantum Counting for Arithmetics

?

The Prime State

$$|P(n)\rangle = \frac{1}{\sqrt{\pi(2^n)}} \sum_{p < 2^n \in Primes} |p\rangle$$

 $\pi(2^n)$ is the Prime Counting Function

Quantum Mechanics allows for the superposition of primes implemented as states of a computational basis

$$|P(n)\rangle = \frac{1}{\sqrt{\pi(2^n)}} \sum_{p < 2^n \in Primes} |p\rangle$$

$$|P(3)\rangle = \frac{1}{\sqrt{4}} (|2\rangle + |3\rangle + |5\rangle + |7\rangle)$$

Gauss, Legendre Sieve of Eratosthenes

$$\pi(x) \approx \frac{x}{\ln x}$$

Prime Number Theorem Gauss, Riemann Hadamard, de la Vallée Poussin Density of primes 1/log x

$$\pi(x) \approx Li(x)$$
$$Li(x) = \int_{2}^{x} \frac{dt}{\log t} \approx \frac{x}{\ln x} + \frac{x}{\ln^{2} x} + \dots$$

$$\pi(10^{24}) = 18435599767349200867866$$
 Platt (2012)

$$\pi(10^{24}) - \frac{10^{24}}{\ln(10^{24})} = 3.410^{20}$$

$$Li(10^{24}) - \pi(10^{24}) = 1.710^{9}$$

If the Riemann Conjecture is correct, fluctuations are bounded

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} \qquad \qquad \text{If} \quad \zeta(s) = 0 \quad \text{with} \quad 0 \le \text{Real}(s) \le 1 \quad \text{then} \quad \text{Real}(s) = \frac{1}{2}$$

$$|Li(x) - \pi(x)| < \frac{1}{8\pi} \sqrt{x} \ln x$$

The prime number function will oscillate around the Log Integral infinitely many times Littlewood, Skewes

A first change of sign is expected for some

 $x < e^{727.9513468} \dots$

1

Could the Prime state be constructed? Does it encode properties of prime numbers? What are its entanglement properties? Could it provide the means to explore Arithmetics? Entanglement: single qubit reduced density matrices

$$|P(n)\rangle = \frac{1}{\sqrt{\pi(2^{n})}} \sum_{i_{n-1},\dots,i_{1},i_{0}=0,1} p_{i_{n-1},\dots,i_{1}i_{0}} |i_{n-1},\dots,i_{1},i_{0}\rangle$$

$$p_{i_{n-1},\dots,i_{1}i_{0}} = \begin{cases} 1 & p = i_{n-1}2^{n-1} + \dots + i_{0} = prime \\ 0 & otherwise \end{cases}$$

$$\rho_{ab}^{(1)} = \frac{1}{\pi(2^{n})} \sum_{i_{n-1}, \dots, i_{2}, i_{0} = 0, 1} p_{i_{n-1}, \dots, i_{2}, a, i_{0}} p_{i_{n-1}, \dots, i_{2}, b, i_{0}}$$

$$\rho_{00}^{(1)} = \frac{\pi_{4,1}(2^{n})}{\pi(2^{n})} \qquad \rho_{11}^{(1)} = \frac{1 + \pi_{4,3}(2^{n})}{\pi(2^{n})} \qquad \rho_{01}^{(1)} = \frac{\pi_{2}^{(1)}(2^{n})}{\pi(2^{n})}$$

Each element counts sub-series of primes and twin primes $\pi_{a,b}(x)$ counts the number of primes equal to $a \mod b$ $\pi_2^{(1)}(x)$ counts twin primes equal to $1 \mod 4$

Entanglement entropy of the Prime state

Scaling of entanglement entropy

 $S \sim n - const$ Random states

S~.8858*n*+*const*

Prime state

$$S \sim n^{\frac{d-1}{d}} + const$$

Area law in d-dimensions

$$S \sim \frac{c}{3} \log n + const$$

Critical scaling in d=1 at quantum phase transitions

 $S \sim \log(\xi) = const$

Finitely correlated states away from criticality

Construction of the Prime state

$$U_{primality} \sum_{x} |x\rangle |0\rangle = |P(n)\rangle |0\rangle + \sum_{c \in composite} |c\rangle |1\rangle$$

$$Prob(|P(n)\rangle) = Prob(ancilla=0) = \frac{\pi(2^{n})}{2^{n}} \approx \frac{1}{n \ln 2}$$

Efficient construction!

Grover construction of the Prime state

$$|\psi_{0}\rangle = \sum_{x<2^{n}} |x\rangle = \frac{1}{\pi (2^{n})} \left(\sum_{p \in primes} |p\rangle + \sum_{c \in composites} |c\rangle \right)$$

$$K$$

$$\# \text{ calls to Grover}$$

$$R(n) \le \frac{\pi}{4} \sqrt{\frac{N}{M}} \le \frac{\pi}{4} \sqrt{n \ln 2}$$

$$|\psi_{f}\rangle = |P(n)\rangle$$

We need to construct an oracle!

Construction of a Quantum Primality oracle

An efficient Quantum Oracle can be constructed following classical primality tests

Miller-Rabin primality test

- Find $x \rightarrow x 1 = 2^s d$
 - Choose "witness" $1 \le a \le x$
- · If $a^d \neq 1 \mod x$ then x is composite $a^{2^r d} \neq -1 \mod x$ $0 \le r \le s - 1$
- If any test fails, *x* may be prime or composite: "liars"
- Eliminate strong liars checking less than ln(x) witnesses

Quantum Counting of Prime numbers

quantum oracle + quantum Fourier transform = quantum counting algorithm

Brassard, Hoyer, Tapp (1998)

Counts the number of solutions to the oracle

We want to count *M* solutions out of *N* possible states

We know an estimate \tilde{M}

$$|\tilde{M} - M| < \frac{2\pi}{c} M^{\frac{1}{2}} + \frac{\pi^{2}}{c^{2}}$$

Bounded error in quantum counting using $c\sqrt{N}$ calls Brassard, Hoyer, Tapp (1998)

Bounded error in the quantum counting of primes

$$|Li(x) - \pi_{QM}(x)| < \frac{2\pi}{c} \frac{x^{\frac{1}{2}}}{\ln^{\frac{1}{2}} x}$$

$$|Li(x) - \pi_{QM}(x)| < \frac{2\pi}{c} \frac{x^{\frac{1}{2}}}{\ln^{\frac{1}{2}} x}$$

Error of counting is smaller than the bound for the fluctuations if Riemann conjecture is correct!

Best classical algorithm by Lagarias-Miller-Odlyzko (1987) implemented by Platt (2012)

$$T \sim x^{\frac{1}{2}} \qquad S \sim x^{\frac{1}{4}}$$

A Quantum Computer could calculate the size of fluctuations more efficiently than a classical computer

Conclusion

I) Quantum Simulation of Geometry and Topology
 Geometry ↔ Site-dependent coupling
 Dimensions ↔ Connectivity
 Boundary conditions ↔ Non-local coupling

II) Quantum Simulation of Arithmetics

Superposition of series of numbers using appropriate q-oracles Measurements of arithmetic functions Verification of Riemann Hypothesis Construction of twin primes

$$U_{+2}|P(n)\rangle|0\rangle = \sum_{p \in primes}|p+2\rangle|0\rangle$$

$$U_{\textit{primality}} U_{+2} |P(n)\rangle |0\rangle = \sum_{p, p+2 \in \textit{primes}} |p+2\rangle |0\rangle + \sum_{p+2 \notin \textit{primes}} |p+2\rangle |1\rangle$$

$$Prob(|twin primes\rangle) = \frac{\pi_2(2^n)}{\pi(2^n)} \approx \frac{1}{(n \ln 2)^2}$$

Efficient construction!

Tests are conditioned to the actual value of x

Beyond Prime numbers: the **q-functor**

$$f: S \subseteq X \rightarrow |S\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle$$

$$|S\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in X} \chi_{S}(x) |x\rangle \qquad \qquad \chi_{S}(x) = \begin{cases} 1 & x \in S \\ 0 & x \notin S \end{cases}$$

Primes Average (Cramér) primes Dirichlet characters

. . .

Only needs the construction of a quantum oracle for $\chi_s(x)$