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The General Problem
OBJECTIVE:

To generate bipartite entanglement between two spins 
(or other degrees of freedom) in mesoscopic solid state structures.

MOTIVATION:
Obtaining an important resource for quantum information 

processing, in solids; linking different registers of a solid state 
quantum computer; testing Bell’s inequalities in solids...

CONTEXT:
Recently there has been an increasing interest in this problem from 
both the quantum information and condensed matter communities, 

with a variety of schemes being proposed.



Previous proposals
• Quantum gate acting on two adjacent stationary spins:

G. Burkard, D. Loss, D. DiVincenzo, PRB 59, 2070 (1999)
W. Oliver, F. Yamaguchi, Y. Yamamoto, PRL 88, 037901 (2002)

How about distant spins/qubits?

• Interactions between mobile spins (and others): 
S. Bose, D. Home, PRL 88, 050401 (2002)
D. Saraga, D. Loss, PRL 90, 166803 (2003)

How about distant stationary spins/qubits?

• Shuttling spins over a distance to precisely-timed gates:
A. Skinner, M. Davenport, B. Kane, PRL 90, 087901 (2003)   

How about a low control/precision scheme?
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Electron Magnetic impurity 1 Impurity 2

Our Proposal
We propose a scheme to entangle two magnetic impurities

(stationary spins 1/2) embedded in a 1-D solid state system,
using a ballistic electron as an agent which scatters off 
the two impurities in succession and entangles them:

Solid: metallic chain of non-magnetic atoms (reduced cross section);

Qubits: two distant embedded spin-1/2 magnetic impurities;

Entangler: ballistic conduction electron, injected under low bias,
to naturally scatter off the two impurities – no control!
See also D. Sagara et al, PRB 71, 045338 (2005).
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kσâkσ +

X
kk0

Jkk0 ~S.~skk0 ,

where ~S is the impurity spin operator, a†kσ creates an electron with wavevector

k and spin σ and ~skk0 = â
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Magnetic impurities embedded in a conduction electron
sea are traditionally modeled by a s-d Hamiltonian.

In this model, the magnetic impurities are localized spins 
interacting with the conduction electrons via an exchange term.

The full Hamiltonian of a system with one impurity reads:

Our Model

The s-d Hamiltonian is actually derived from the more fundamental Anderson
Hamiltonian through the Schrieffer-Wolff transformation.

Consequently, the interaction strength J is related to the strength of the Coulomb
interaction between electrons and the hybridization of narrow and conduction bands.

In our calculation we will adopt the usual assumption that J is independent of k,k'.



We want to find out how much entanglement may be generated 
by a conduction electron that is injected in the system 

and interacts with both magnetic impurities.

One may determine the system's final state by calculating 
the scattering matrix associated with each impurity 

and combining them together.

The result is a sequence of (infinitely many) scattering 
processes, in which the output of a scattering event 

is the input of the subsequent one.

The result of each individual scattering process is determined 
by use of Fermi's golden rule. The relevant T matrix is calculated 

to first order in the interaction.

Our Calculations (1)



If we consider that the conduction electron is being injected 
under low bias, its energy and wave vector will be the Fermi 
energy and Fermi wave vector of the system, respectively.

We thus assume a initial state of the form:

Our Calculations (2)

|Ψini = |kF , ↑i⊗ |↓↓i
As a result of the multiple scatterings of the conduction electron

by the two impurities, a final state is generated which is a
superposition of states in which the conduction electron 

has been reflected or transmitted, and the latter component is:
|Ψtouti = A|kF , ↑i⊗ |↓↓i+B|kF , ↓i⊗ |↑↓i+ C|kF , ↓i⊗ |↓↑i .

The coefficients A, B, and C may be expressed as 
an infinite sum of powers of the product              .

If the transmitted electron is down, the impurities are entangled!
Jρ(εF )
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Conclusions and Future Directions
We have presented a scheme that allows for the 
generation of (maximal) entanglement between

two distant stationary qubits in a 1-D solid
simply by scattering, with no control required.

→ Improve probabilities?
→ Robustness to noise, temperature?
→ Generalization to more dimensions, 
→ multipartite entanglement?
→ Implementations (p/d)? Applications?
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Reversing the Problem!

Electron Magnetic impurity 1 Impurity 2

Now we want to investigate the transmittivity of sending one 
spin qubit through our quantum wire with already-entangled impurities.

The transmittivity will be obtained as a function of the
dimensionless quantities: and .

Again we assume that we can prepare and detect
the single electron transmitted.

kx0

x0

Jρ(ε)



Our Results (1)
Electron Magnetic impurity 1 Impurity 2
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Dotted, dashed and solid lines stand for Jρ(ε) = 1, 2, 10, respectively.



Our Results (1)
Electron Magnetic impurity 1 Impurity 2
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Let us assume an electron effective mass of 0.067 
m0 (as in GaAs quantum wires) and the impurities 
to be two quantum dots, each of size 1 nm.

As a consequence, the maximum electron energy 
allowing to assume a contact electron-dot potential 
is around 2 meV.

In this case, for , we obtain 
which appears to be a reasonable value.

Jρ(ε) = 1 J ' 1 eVÅ

Dotted, dashed and solid lines stand for Jρ(ε) = 1, 2, 10, respectively.



|Ψ+i = 1√
2
(|↑↓i+ |↓↑i)

Our Results (2)
Electron Magnetic impurity 1 Impurity 2
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We observe perfect
and zero transmittivity

depending on the 
entangled state!

|Ψ−i = 1√
2
(|↑↓i− |↓↑i)

|ψi = cos θ|↑↓i+ eiφ sin θ|↓↑i



Our Results (3)
Electron Magnetic impurity 1 Impurity 2

α|↑ie + β|↓ie

Just like a statistical mixture!

|ψi = cos θ|↑↑i+ eiφ sin θ|↓↓i
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Initial state |↑↑i (a), |↓↓i (b) and (|↑↑i+ eiφ |↓↓i)/√2 for arbitrary φ (c).

Dotted, dashed and solid lines stand for Jρ(ε) = 1, 2, 10, respectively.



2J

What if the impurities are different?

Electron Magnetic impurity 1 Impurity 2
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Conclusions and Future Directions

We have shown that the entanglement between the 
impurities can have a strong influence in the 

transmittivity of a spin qubit in a quantum wire.
In fact, it can completely inhibit or transmit this spin.

Such effect are due to destructive and constructive 
interference, just like in a Fabry-Perot inteferometer.

→ Generalization to other scenarios?
→ Implementations (preparation/detection)?
→ Applications to entanglement detection?



Summary
1. Generation of (maximal) entanglement between

two distant stationary qubits in a 1-D solid.

2. Transmission of single electrons in a quantum 
wire controlled by entanglement.

→ Robustness to noise, temperature?
→ Generalization to more dimensions, 
→ multipartite entanglement?
→ Implementations? Applications?




