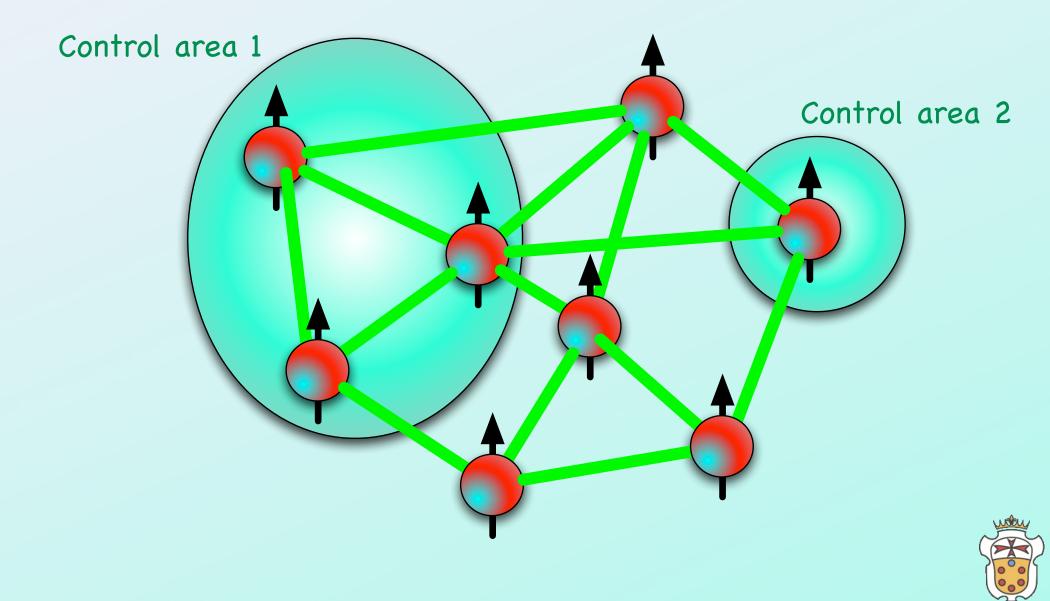
IICQI 2007 Spin network communication protocols

Vittorio Giovannetti

http://www.qti.sns.it/

NEST-CNR-INFM & Scuola Normale Superiore (PISA)

Spin Network = Collection of 2-dim systems coupled through some given Hamiltonian



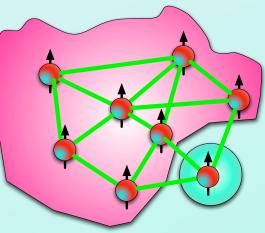
Examples of quantum protocols

Universal Quantum computation

DiVincenzo et al. Nature(2000) Benjamin, PRL88 (2002) Benjamin, Bose PRL (2003)

Output data

Input data Quantum control: quantum state preparation, cooling, read-out



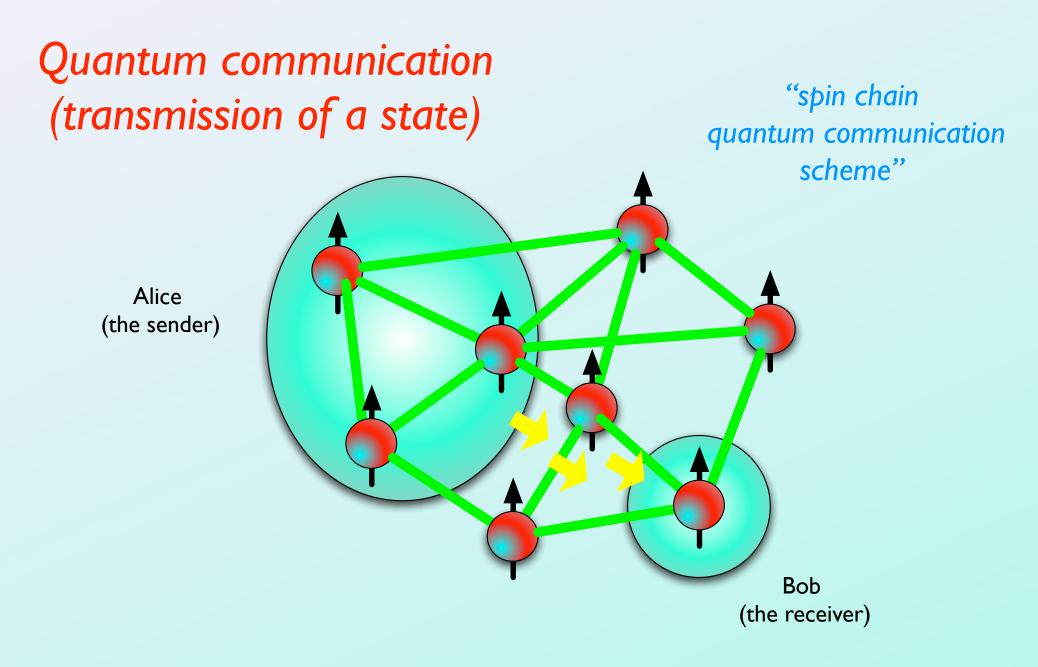
Fitzsimons et al. PRL99 (2007) Burgarth,VG PRL (to be published) (2007)

De Chiara, et al. PRA (2004)

(approx)

Quantum

cloning



MOTIVATIONS

Quantum Information protocol with "minimal" external control

Choose a given model and use just the time evolution (less flexible but more stable)

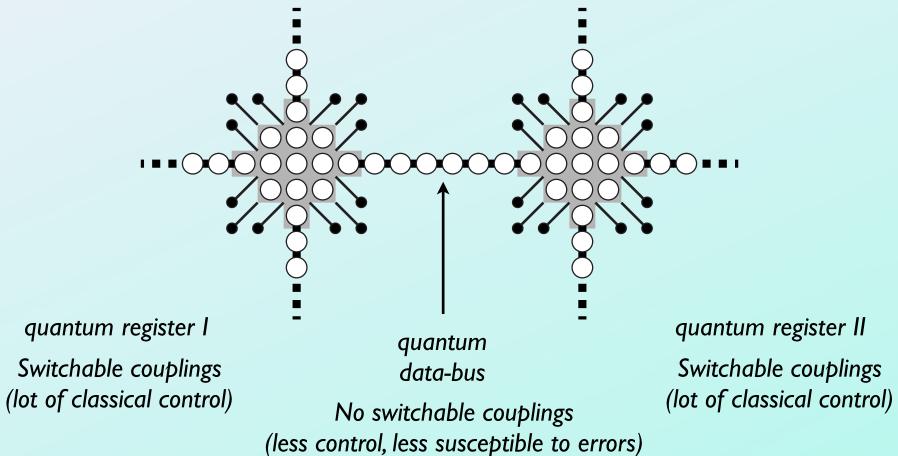
Implementation of Quantum Information schemes in solid state devices

Josephson arrays Paul Traps Optical lattices QED+atoms

Penning Traps Quantum dots NMR

New methods to analyze many-body physics

Not suited for long distance communication but potentially useful to connect clusters of quantum registers (for reasons of compactness, mobility and cost this may be preferable than a single HUGE register). Also QEC is not linear in the dimension of the register (the amount of control to protect a register of N+M qubits, is arguably bigger than the control required to control two registers of N and M qubits).



"Optimal quantum-chain communication by end gates"

Phys. Rev. A **75**, 062327 (2007)

D. Burgarth, ETH (Zurich)

V. G.

S. Bose, University College (London)

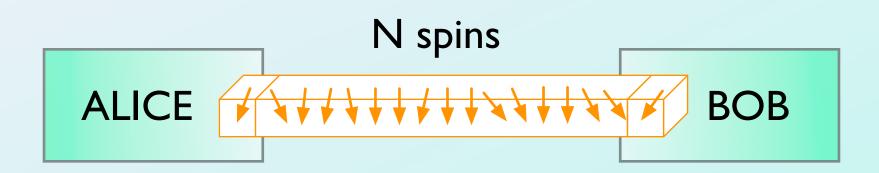
"Full control by locally induced relaxation"

Phys. Rev. Lett. (to appear)

D. Burgarth, ETH (Zurich) V. G.

Quantum Chain model for communication

Bose S 2003 Phys. Rev. Lett. 91 207901



Linear chain of permanently coupled spins Ferromagnetic Heisenberg interaction

Ferromagnetic Heisenberg coupling *

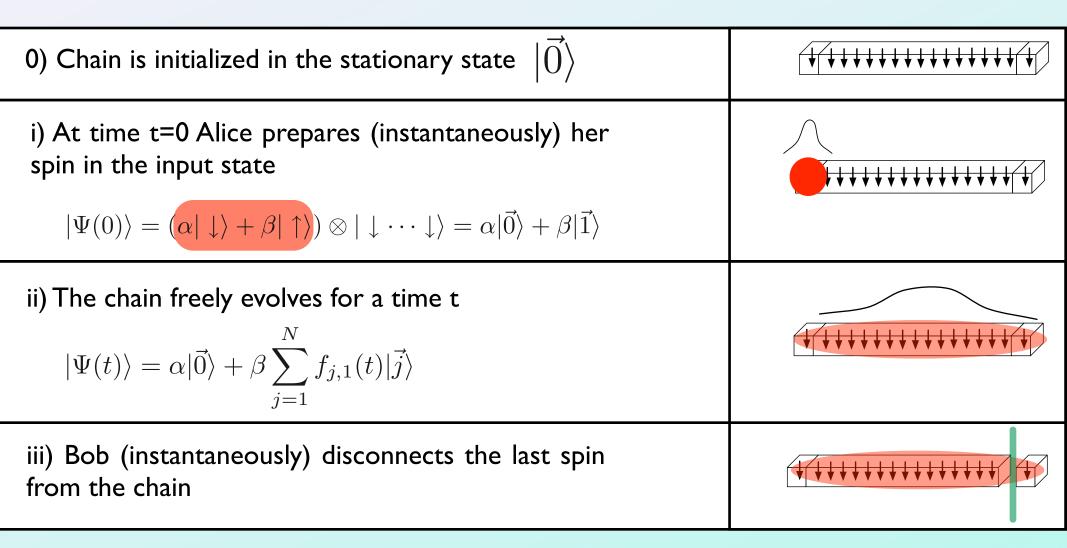
$$H = -\sum_{\langle i,j \rangle} J_{ij} (\sigma_x^i \sigma_x^j + \sigma_y^i \sigma_y^j + \sigma_z^i \sigma_z^j) - \sum_{i=1}^N B_i \sigma_z^i$$

 $[H, S_z^{(tot)}] = 0$ z-axis component of the total spin preserved

Spin sectors (i.e. total number N_s of spins up) are preserved by the Hamiltonian evolution

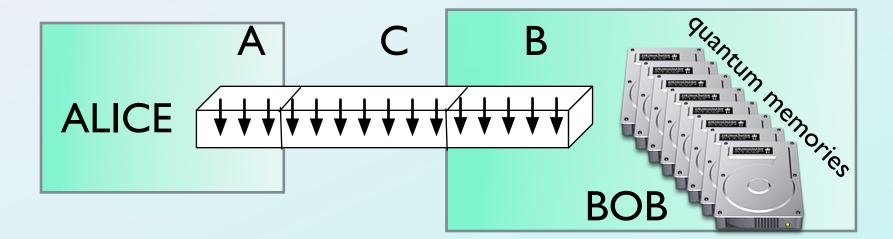
$$\begin{split} N_{s} &= 0 \quad |\vec{0}\rangle \equiv |\downarrow\downarrow \cdots \downarrow\rangle \quad \longrightarrow |\vec{0}\rangle \\ N_{s} &= 1 \quad |\vec{j}\rangle \equiv |\downarrow\downarrow\downarrow \cdots \downarrow\uparrow\downarrow \cdots \downarrow\rangle \rightarrow \sum_{j'} f_{j',j}(t) |\vec{j'}\rangle \\ f_{j',j}(t) &= \langle \vec{j'} | e^{-iHt/\hbar} |\vec{j}\rangle \quad \text{transmission amplitudes} \end{split}$$

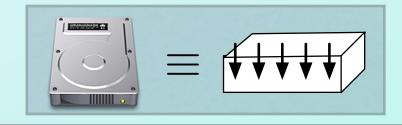
* similar results applies also for XXZ, XX couplings



Perfect Transfer if $|\Psi(t)\rangle = \alpha |\vec{0}\rangle + \beta |\vec{N}\rangle = |\downarrow \cdots \downarrow\rangle \otimes (\alpha |\downarrow\rangle + \beta |\uparrow\rangle)$

Memory protocol

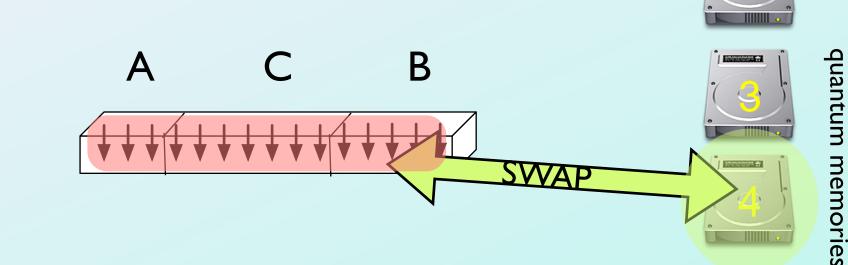




At regular time intervals Bob applies SWAPS ops to transfer the state of the B spins in to his quantum memories

Alice controls Na spins and she is allowed to encode in them up to Na qubits of information

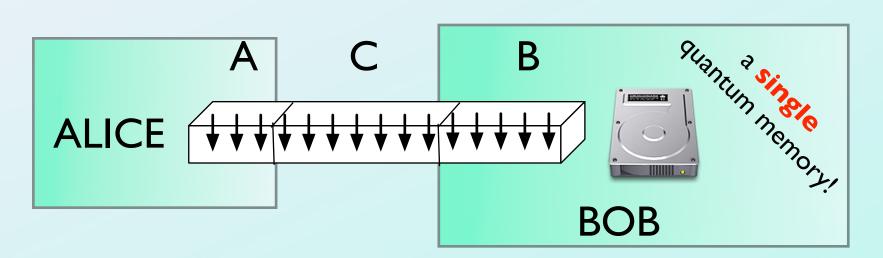
$t \approx NT_e(\ln N_A + |\ln(1-F)|)/N_B$

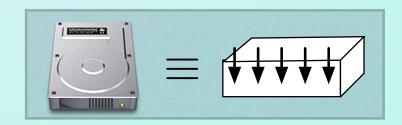


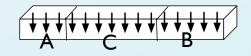
Since the whole process is unitary this is a "coherent cooling" of the chain (similar to homogezenization*). We are indeed driving the ACB towards its ground state. The information originally contained in AC is transferred to the memory array!

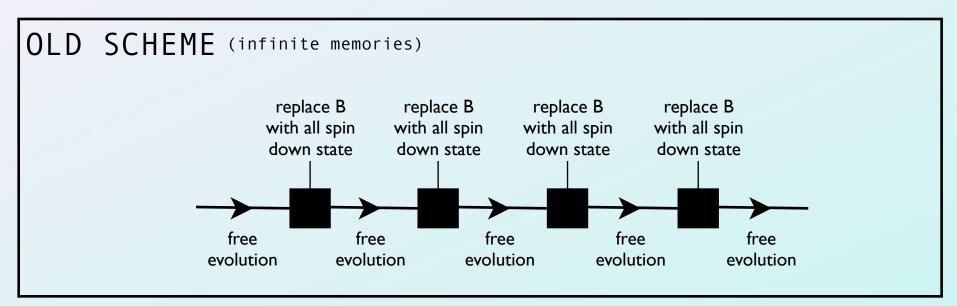
* M. Ziman *et al.*, Phys. Rev. A **65**, 042105 (2002).

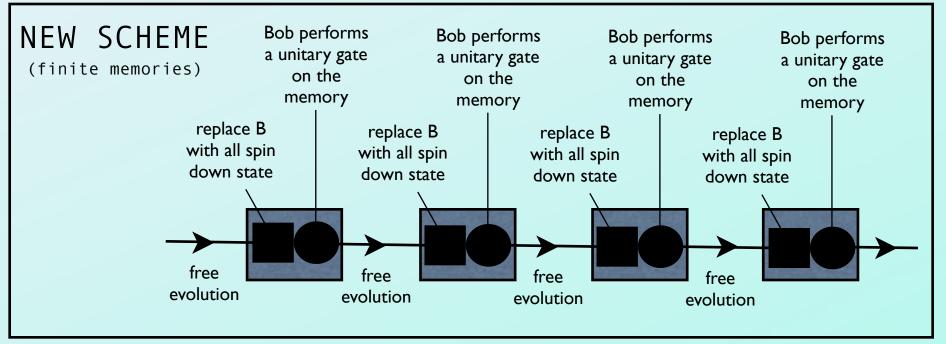
Burgarth, VG, Bose PRA75 (2007)

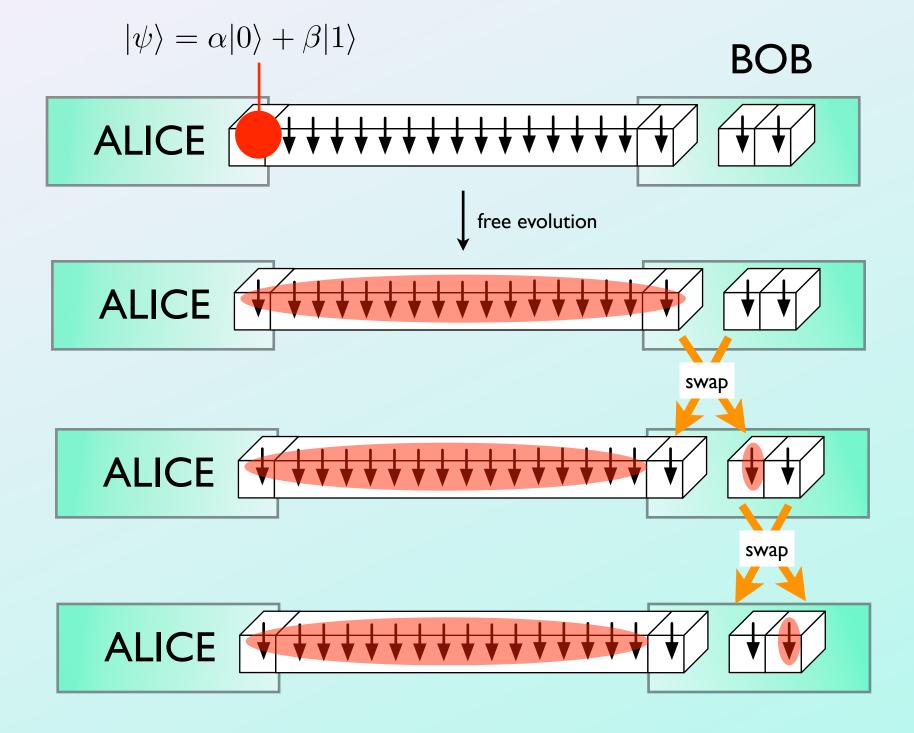






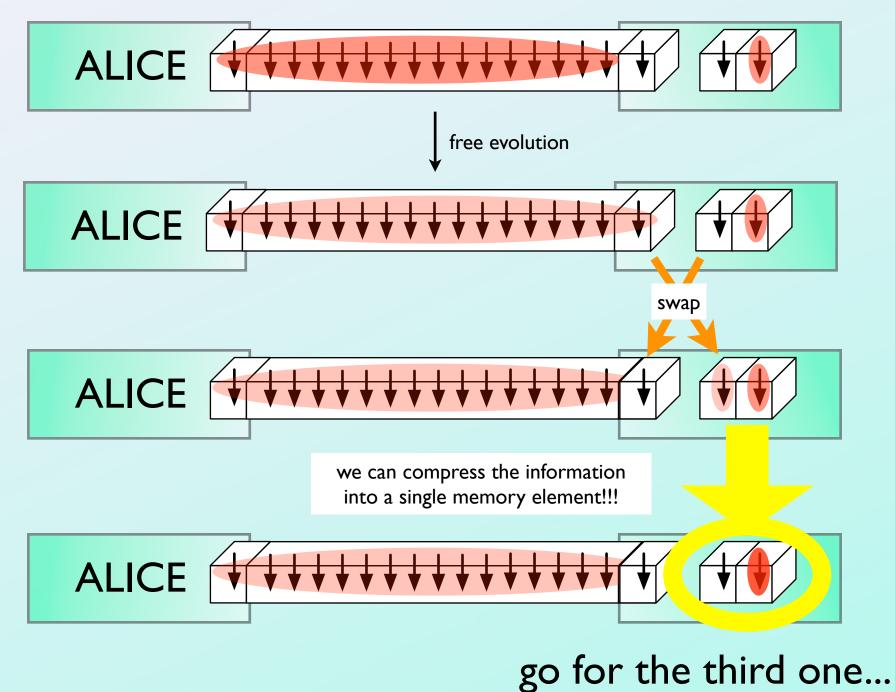






another round...

BOB



$$\gamma_{ij} = f_{i,j}(t)$$

Free evolution of the chain

$$\left(\alpha | 000...000 \rangle + \beta \sum_{n_0=1,N} \gamma_{1,n_0} | n \rangle \right) \otimes | 00 \rangle_M$$

swap between last element and first memory

$$\alpha|000...000\rangle \otimes |00\rangle_M + \beta \sum_{n_0=1,N-1} \gamma_{1,n_0}|n_0\rangle \otimes |00\rangle_M + \beta \gamma_{1N}|000...000\rangle \otimes |10\rangle_M$$

$$= |000...000\rangle \otimes (\alpha|00\rangle_M + \beta\gamma_{1N}|10\rangle_M) + \beta \sum_{n_0=1,N-1} \gamma_{1,n}|n_0\rangle \otimes |00\rangle_M$$

swap between first memory and second memory

$$|000...000\rangle \otimes (\alpha|00\rangle_M + \beta\gamma_{1N}|01\rangle_M) + \beta\sum_{n_0=1}^{N-1}\gamma_{1,n}|n_0\rangle \otimes |00\rangle_M$$

Free evolution of the chain

$$|000...000\rangle \otimes (\alpha|00\rangle_{M} + \beta\gamma_{1N}|01\rangle_{M}) + \beta \sum_{n_{0}=1}^{N-1} \sum_{n_{1}=1}^{N} \gamma_{1,n_{0}}\gamma_{n_{0},n_{1}}|n_{1}\rangle \otimes |00\rangle_{M}$$

$$\begin{split} |000...000\rangle \otimes \left[\alpha |00\rangle_{M} + \beta \gamma_{1N} |01\rangle_{M} + \beta \sum_{n_{0}=1}^{N-1} \gamma_{1,n_{0}} \gamma_{n_{0},N} |10\rangle_{M} \right] + \beta \sum_{n_{0}=1}^{N-1} \sum_{n_{1}=1}^{N-1} \gamma_{1,n_{0}} \gamma_{n_{0},n_{1}} |n_{1}\rangle \otimes |00\rangle_{M} \\ = |000...000\rangle \otimes \left[\alpha |00\rangle_{M} + \beta \sqrt{\eta_{1}} |\phi_{1}\rangle_{M} \right] + \beta \sum_{n_{0}=1}^{N-1} \sum_{n_{1}=1}^{N-1} \gamma_{1,n_{0}} \gamma_{n_{0},n_{1}} |n_{1}\rangle \otimes |00\rangle_{M} , \end{split}$$

$$\eta_{1} = |\gamma_{1,N}|^{2} + |\sum_{n_{0}=1}^{N-1} \gamma_{1,n_{0}} \gamma_{n_{0},N}|^{2}$$
$$|\phi_{1}\rangle_{M} = \left[\gamma_{1N}|01\rangle_{M} + \sum_{n_{0}=1}^{N-1} \gamma_{1,n_{0}} \gamma_{n_{0},N}|10\rangle_{M}\right]/\sqrt{\eta_{1}}.$$
 this is orthogonal with respect to $|00\rangle_{M}$!!!!!

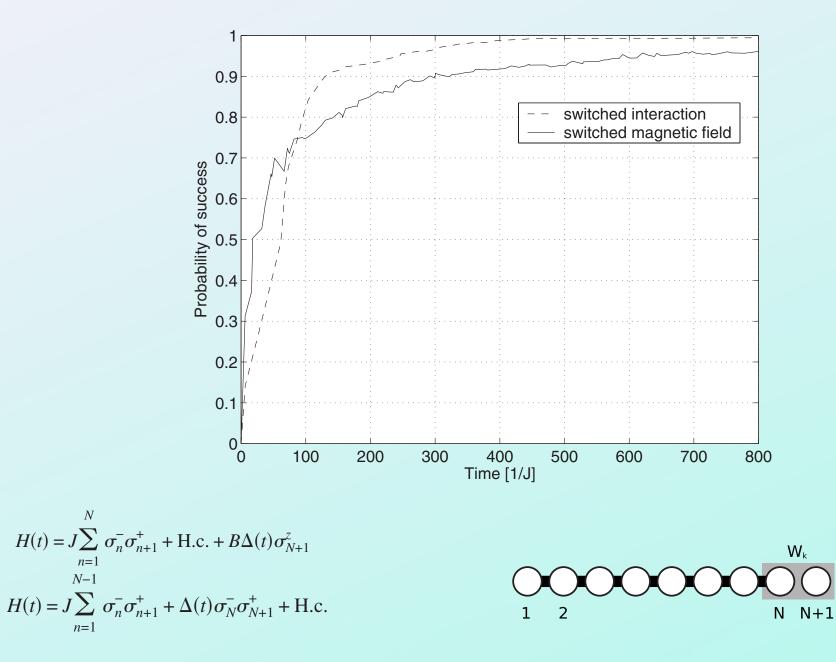
Therefore we can define a two-qubit unitary operator which performs the following transformation:

$$V_1 |\phi_1\rangle_M = |01\rangle_M$$

$$V_1 |00\rangle_M = |00\rangle_M .$$

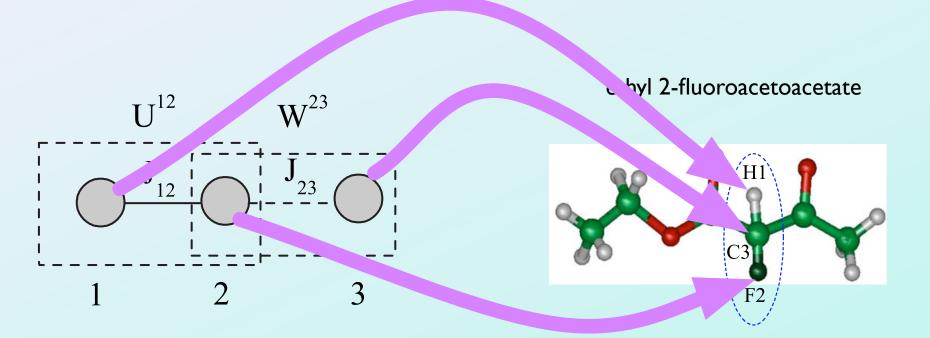
This is our compression gate

Simplification



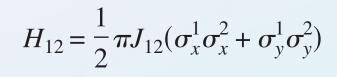
NMR implementation of the "end gates" protocol (N=2)

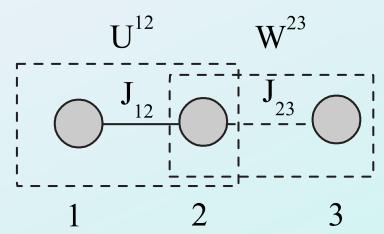
Zhang, Rajendran, Peng and Suter PRA 76 (2007)

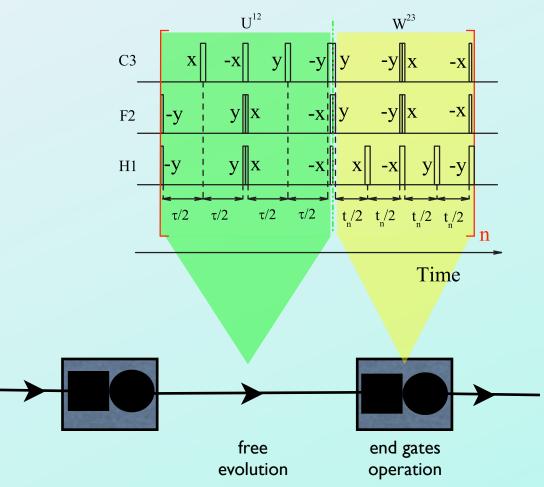


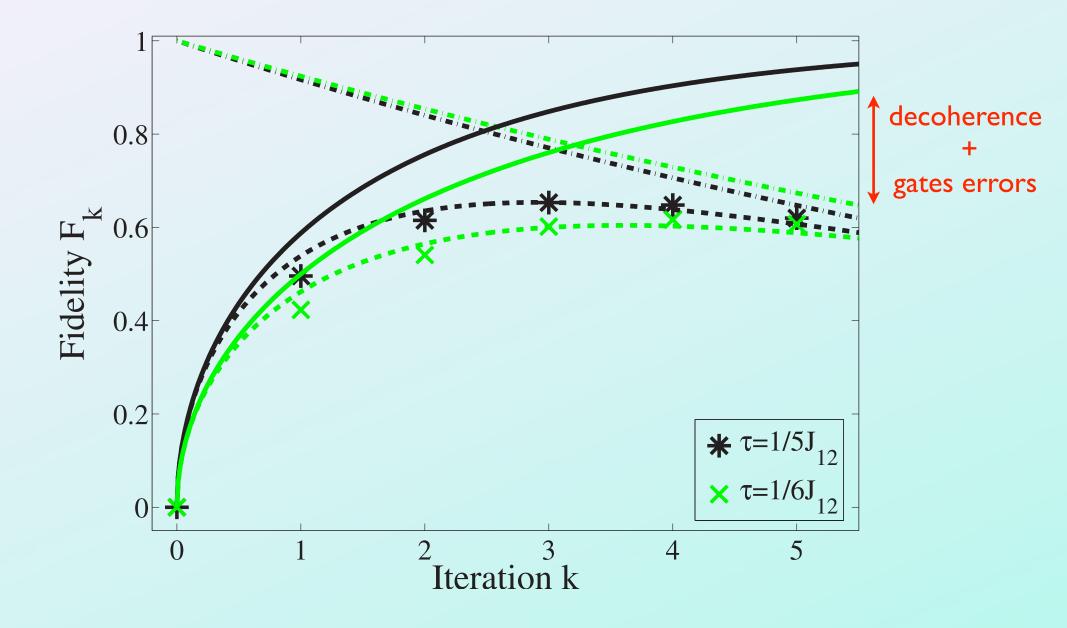
	H1	F2
F2	48.5	
C3	160.8	-195.1

Nucleus	$T_1(s)$	T ₂ (s)
H1	3.3	1.1
F2	3.2	1.5
C3	3.7	1.3

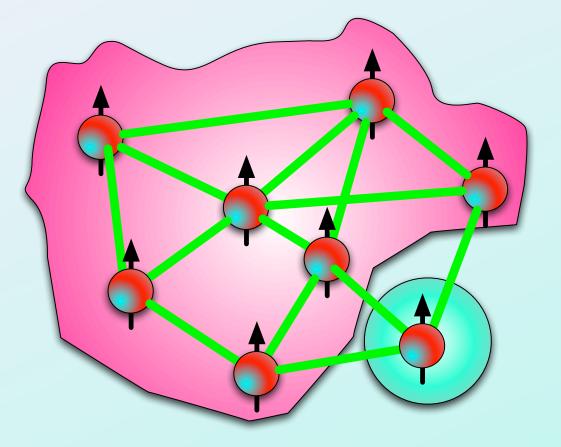








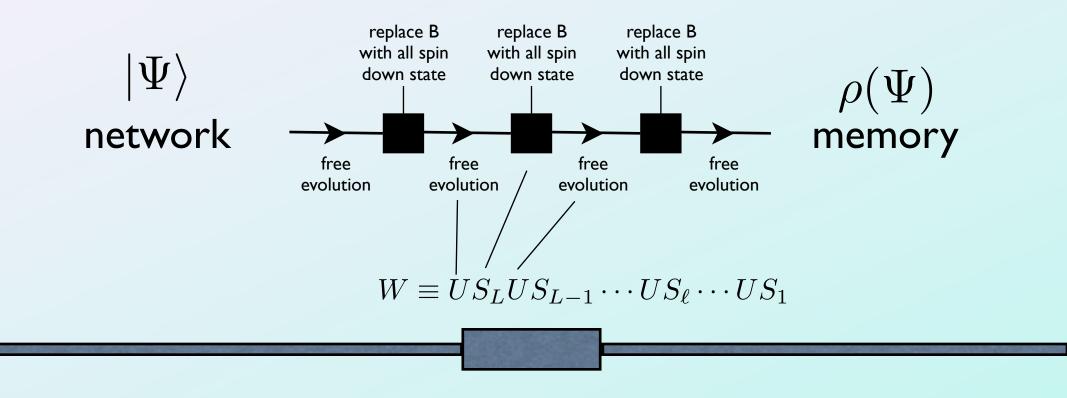
We know how to extract the information out of the network: what about the reverse procedure? Can we "up-load" the quantum network?

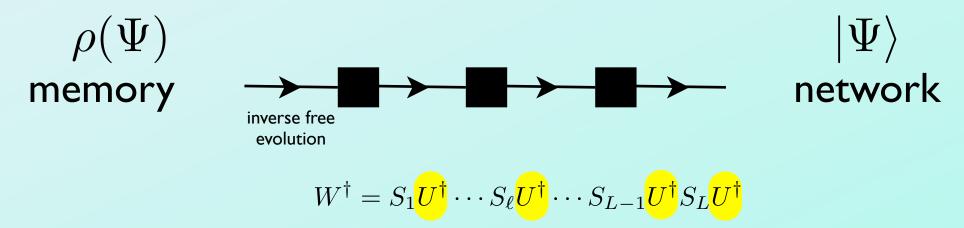


Quantum control

S. Lloyd, Landahl, Slotine PRA69 (2004)

Burgarth,VG PRL (to be published) (2007)





- Josephson arrays
- Penning & Pauli traps

Romito, Fazio, Bruder, PRB 71 (2005) Lyakhov, Bruder, NJP 7 (2005)

Porras, Cirac PRL 92 (2004) Ciaramicoli, Marzoli, Tombesi, PRA 75 (2007)

• Quantum dots

D'Amico, arXiv: cond-mat/0511470

• NMR

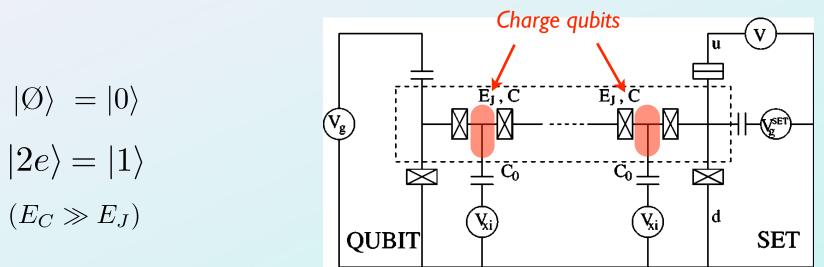
Zhang, Rajendran, Peng, Suter, PRA 76 (2007) Cappellaro, Ramanathan, Cory arXiv: 0706.0342

Optical lattices

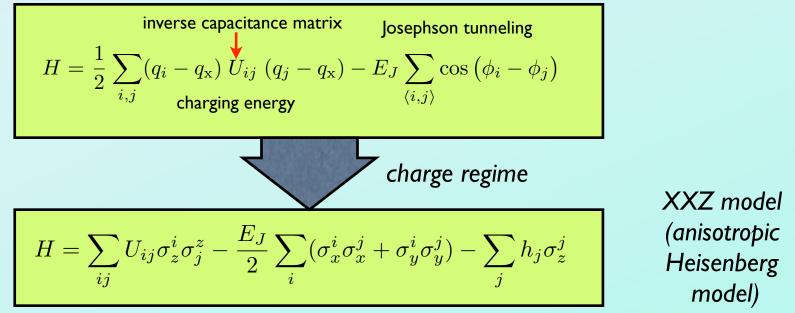
Duan, , Demler, Lukin, PRL91 (2003) Jane' et al. IJQC 3 (2006)

Josephson junctions array (I)

Romito, Fazio, Bruder, PRB 71 (2005)

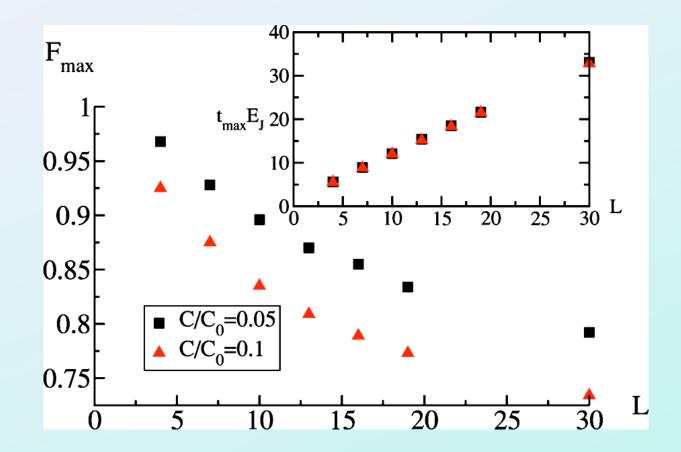


Quantum Phase Model Hamiltonian



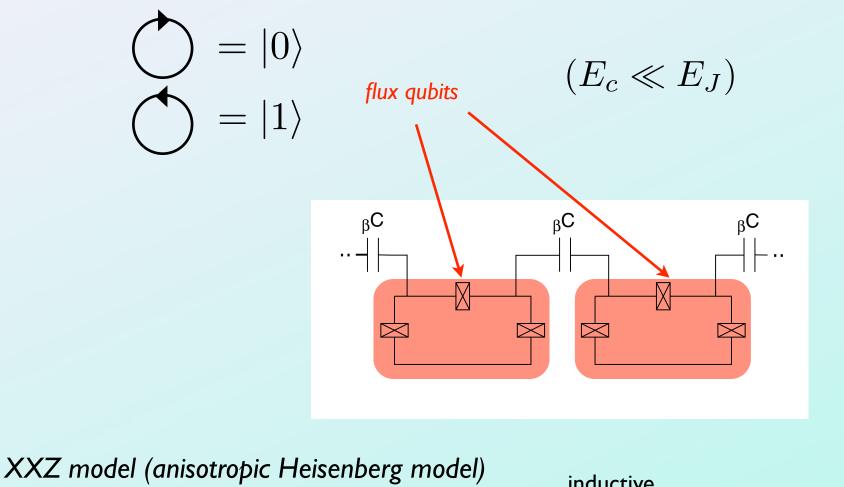
long range interaction

Bruder, Fazio, Schon, PRB47 (1993)



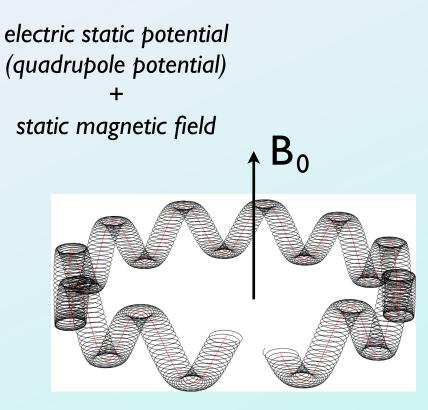
Josephson junctions array (II)

Lyakhov, Bruder, NJP 7 (2005)

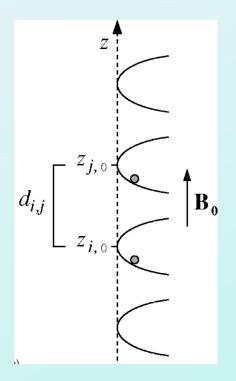


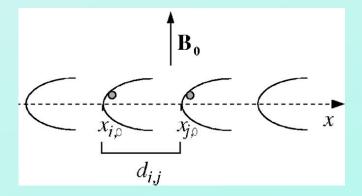
$$H = -\sum_{i=2}^{N} \begin{bmatrix} J_{xy}(\sigma_i^+ \sigma_{i-1}^- + \sigma_i^- \sigma_{i-1}^+) + J_z \sigma_i^z \sigma_{i-1}^z \end{bmatrix} - \sum_{i=1}^{N} (\Delta \sigma_i^x + B \sigma_i^z)$$
capacitive
coupling
tunneling

Penning Traps

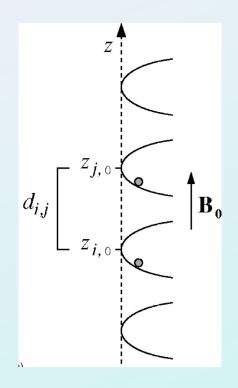


magnetron, cyclotron, axial oscillations





Castrejon-Pita, Thompson PRA 72 (2005)



"effective" spins-spins coupling

$$H'_{s} \simeq \sum_{i=1}^{N} \frac{\hbar}{2} \omega_{s} \sigma_{i}^{z} - \hbar \sum_{i>j}^{N} \left(2J_{i,j}^{z} \sigma_{i}^{z} \sigma_{j}^{z} - J_{i,j}^{xy} \sigma_{i}^{x} \sigma_{j}^{x} - J_{i,j}^{xy} \sigma_{i}^{y} \sigma_{j}^{y} \right),$$

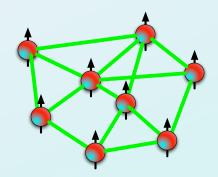
long range interactions

Interaction among electrons: coulomb repulsion

 $J_{ij} \propto d_{ij}^{-3}$

Zoology of Spin Hamiltonians

XXZ coupling



$$\begin{split} H = & -\sum_{\langle i,j \rangle} J_{ij} (\sigma_x^i \sigma_x^j + \sigma_y^i \sigma_y^j) + \Delta \sigma_z^i \sigma_z^j) - \sum_{\substack{i=1 \\ i=1 \\ 2 \left(\sigma_+^i \sigma_-^j + \sigma_-^i \sigma_+^j\right)}}^N B_i \sigma_z^i \\ & \text{anisotropy} \\ \text{term} \\ \end{split}$$

Heisenberg	$\Delta = 1$	$J_{ij} \ge 0$ ferro $J_{ij} \leqslant 0$ anti-ferro
XX	$\Delta = 0$	
Ising	NO EXCHANGE	

