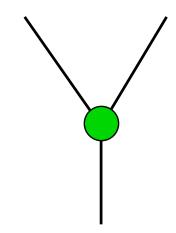
A Graphical Calculus for Quantum Observables



Ross Duncan
Oxford University Computing Laboratory
Joint Work with Bob Coecke

9 September 2007 IICQI'07

Motivation

- Quantum observables may be incompatible: position/momentum, polarisation, spin ...
- In traditional quantum logic approaches these observables are simply *incomparable* in the lattice.
- However if one wants to *compute* with quantum mechanics we need know how these observables relate to each other.

Cloning and Deleting

Consider the following maps:

$$\delta_Z:|i\rangle\mapsto|ii\rangle$$
 $\epsilon_Z:\sum_i|i\rangle\mapsto 1$

- δ_Z is the *cloning* map for the basis $|0\rangle$, $|1\rangle$.
- ϵ_Z is the uniform deleting of this basis.

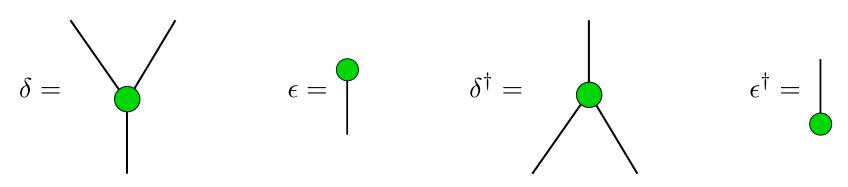
Together these maps describe how to embed classical data into the quantum state space.

Obviously δ_Z is cannot clone all states:

$$\delta_Z \circ \epsilon_Z^{\dagger} = \delta_Z(|0\rangle + |1\rangle) = |00\rangle + |11\rangle$$

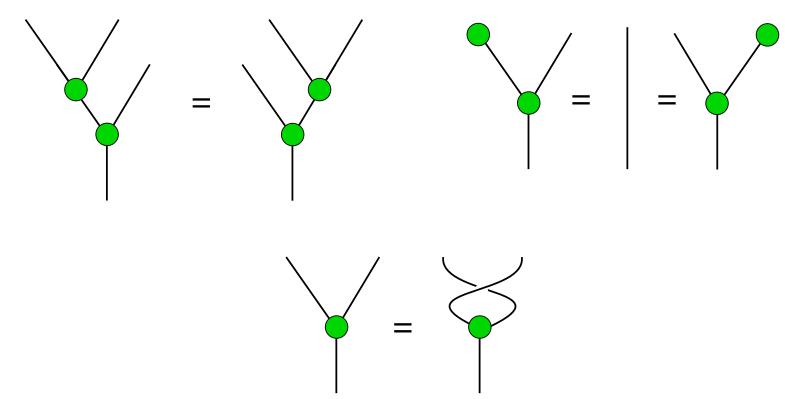
Classical Objects

Represent maps constructed from δ_Z and ϵ_Z as graphs built up from:



Algebraic Laws

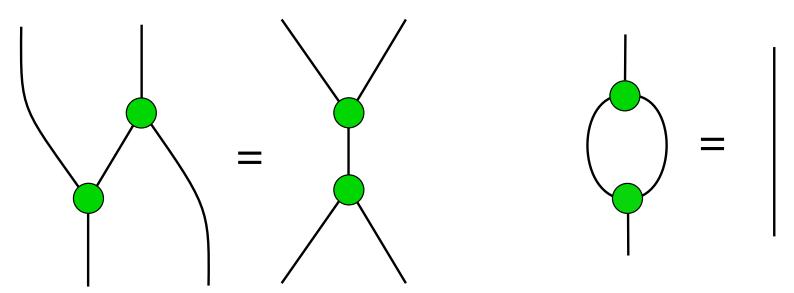
Comonoid laws:



(And their duals, the monoid laws)

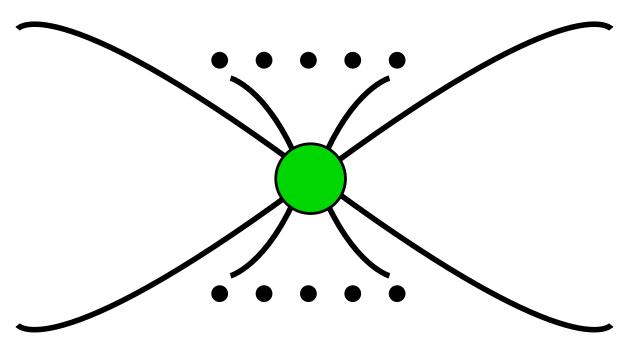
Algebraic Laws

Special Frobenius laws:



Spider Theorem

Theorem 1. Any map constructed by composing δ_Z and ϵ_Z , and their adjoints is uniquely determined by the number of inputs and outputs.



Therefore the graphical calculus for one classical object is rather uninteresting.

Another Classical Structure

Can equally well use the X basis to define a classical structure:

$$\delta_X: |+\rangle \mapsto |++\rangle \qquad \qquad \epsilon_X: \sqrt{2} |0\rangle \mapsto 1$$

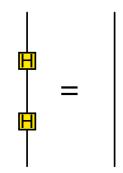
These obey all the same algebraic laws as δ_Z , ϵ_Z . Further more:

- $\sqrt{2} |0\rangle = \epsilon_X^{\dagger};$
- $\delta_Z \epsilon_X^{\dagger} = \delta_Z |0\rangle = |00\rangle = \epsilon_X^{\dagger} \otimes \epsilon_X^{\dagger};$
- $\bullet \mid + \rangle = \epsilon_Z^{\dagger}$
- $\delta_X \epsilon_Z^{\dagger} = \delta_X \ket{+} = \ket{++} = \epsilon_Z^{\dagger} \otimes \epsilon_Z^{\dagger}$

The Hadamard Map

The Hadamard map $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$ enjoys a number of useful properties:

• Self adjointness: $H = H^{\dagger}$; and unitarity: $HH = \mathrm{id}$;



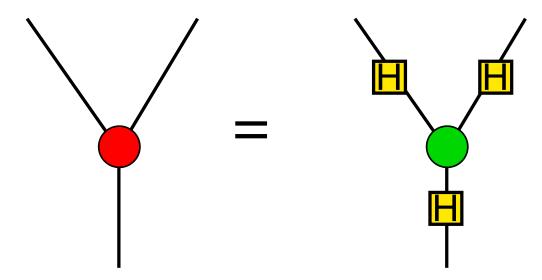
 \bullet The Hadamard exchanges the X and Z bases.

Hence:

$$\delta_X = (H \otimes H)\delta_Z H \qquad \epsilon_X = \epsilon_Z H$$

A 2nd Classical Structure

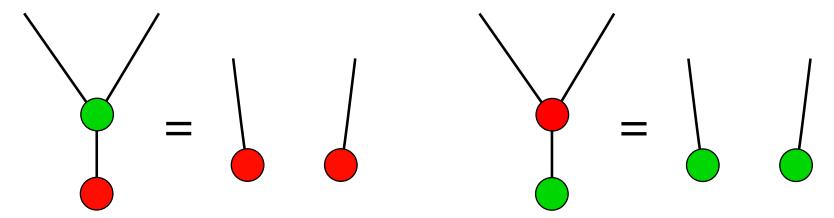
Represent the classical structure induced by H as a red dot:



We can immediately derive a law for changing the colour of dots by introducing H boxes. What other laws hold?

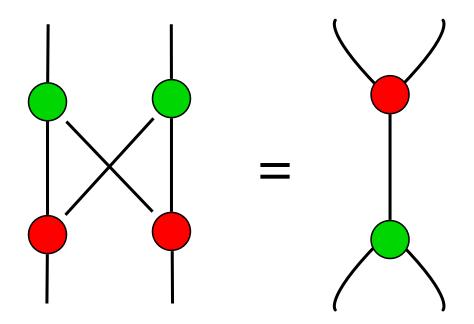
Bialgebraic Laws for Non-commuting observables

Cloning Laws:



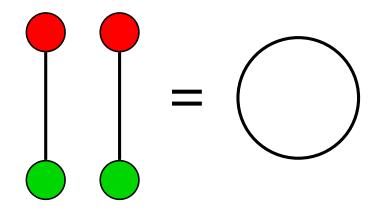
Bialgebraic Laws for Non-commuting observables

Bialgebra Law:



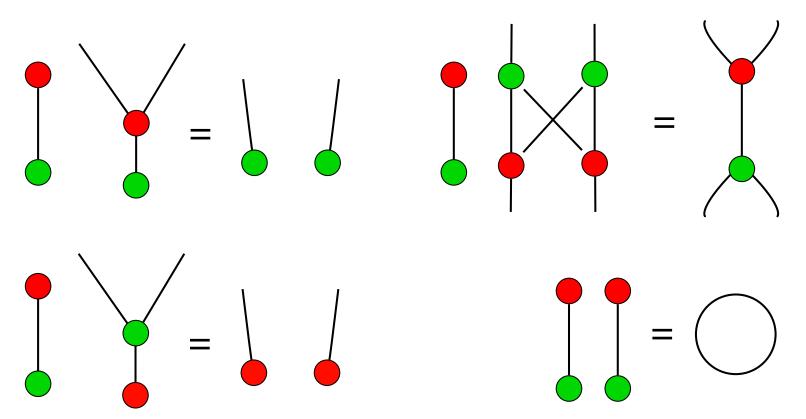
Bialgebraic Laws for Non-commuting observables

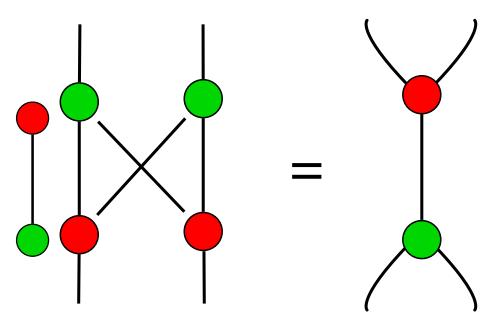
Dimension Law:

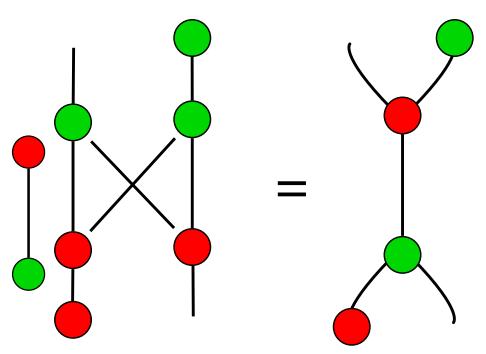


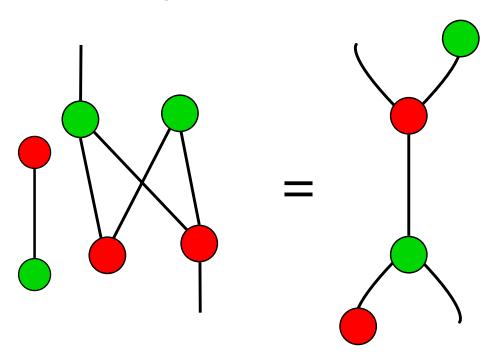
The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a scaled bialgebra.

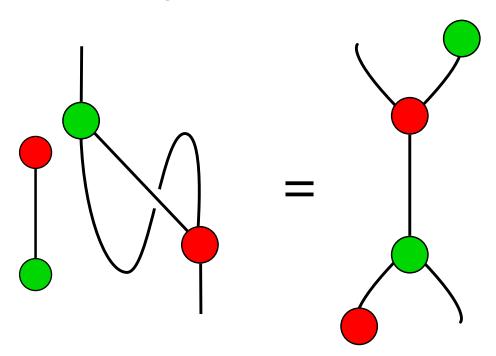
Scaled Bialgebra Laws

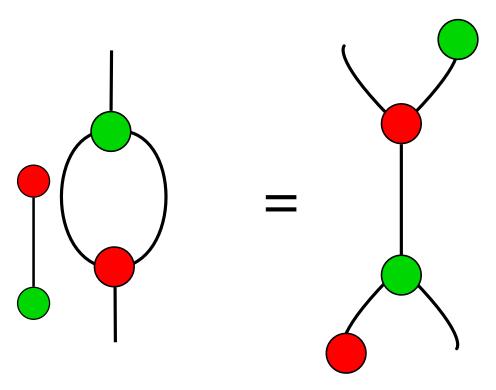


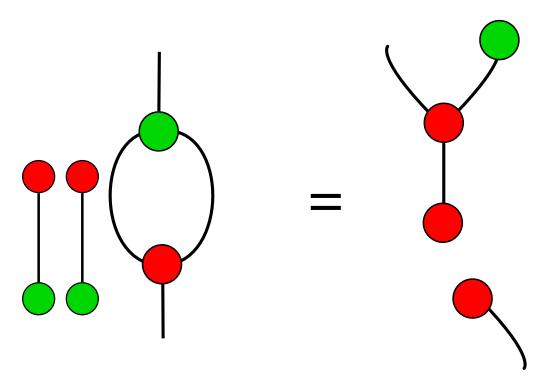


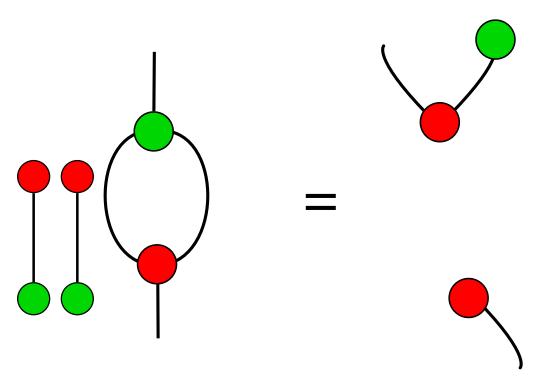


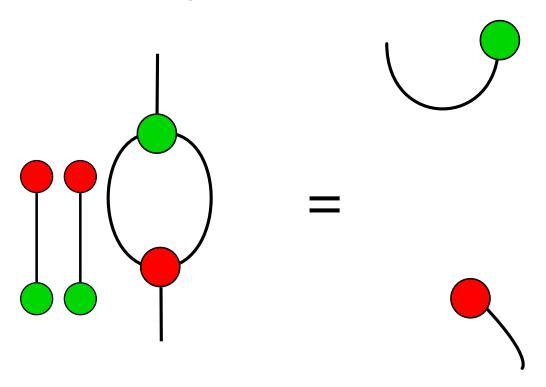


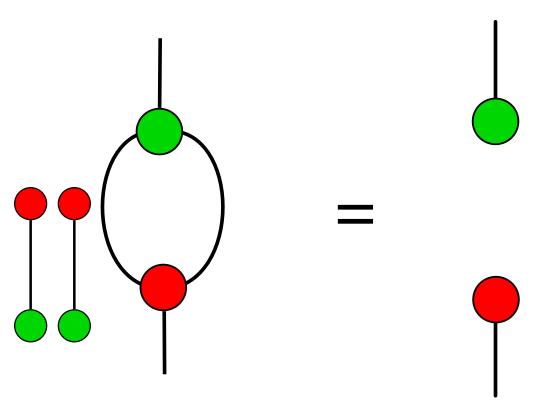


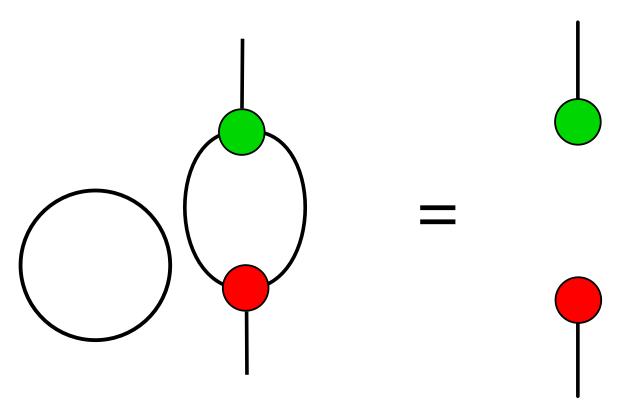






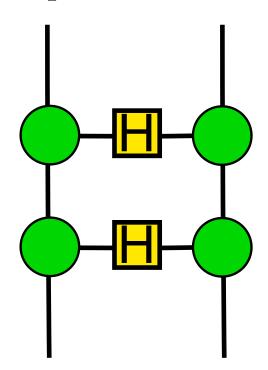


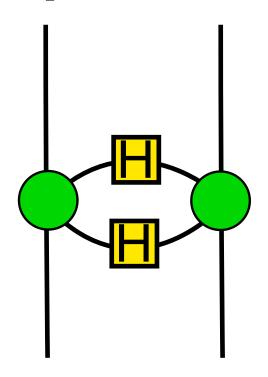


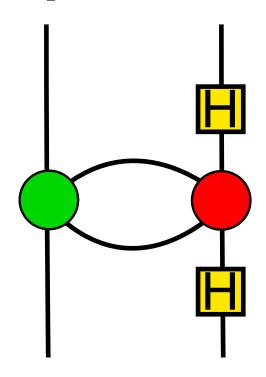


Therefore, the scaled bialgebra is in fact a *scaled Hopf algebra*, whose antipode is the identity times the dimension of the underlying space.

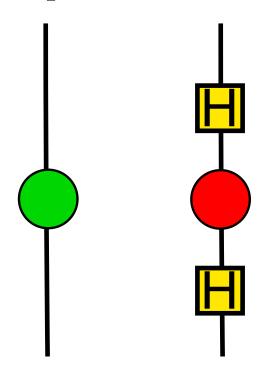
Representing Quantum Logic Gates



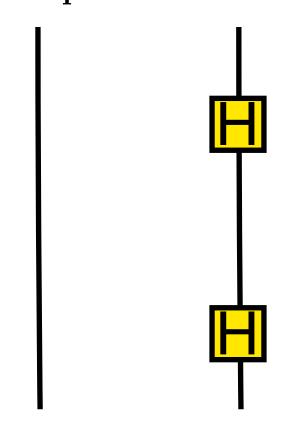




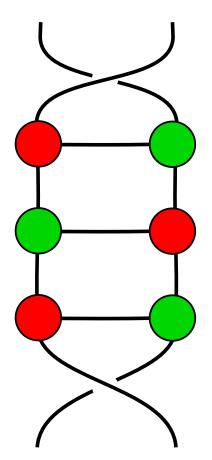
Example: $\wedge Z \circ \wedge Z = id$

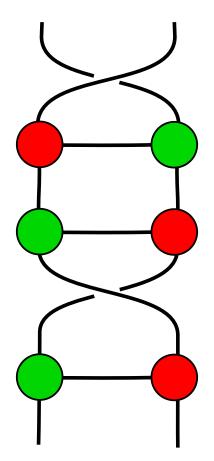


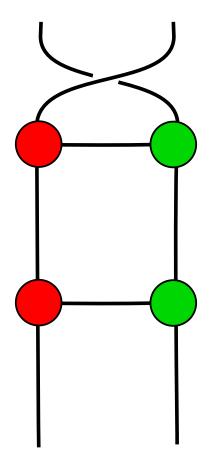
Example: $\wedge Z \circ \wedge Z = id$

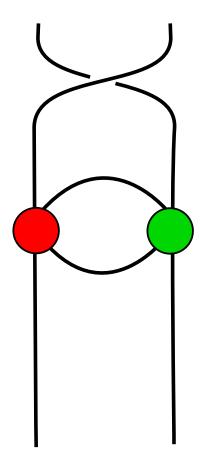




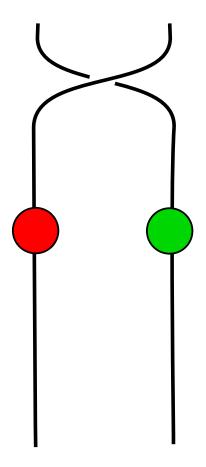




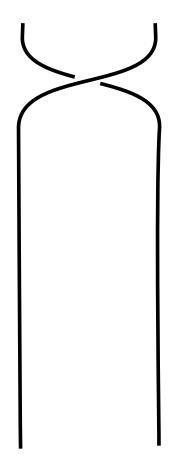




Example: $3 \times \wedge X = \mathbf{swap}$



Example: $3 \times \wedge X = \mathbf{swap}$



Incorporating Phases

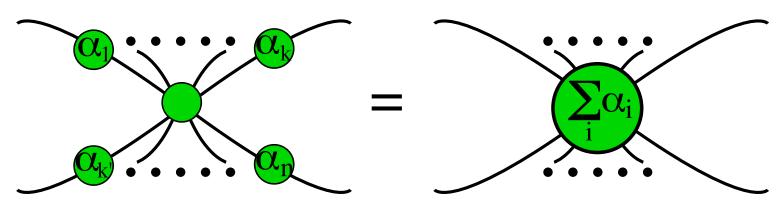
Let $\alpha \in (0, 2\pi)$; consider the maps:

$$Z_{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \bigcirc$$

$$X_{\alpha} = HZ_{\alpha}H = \bigcirc$$

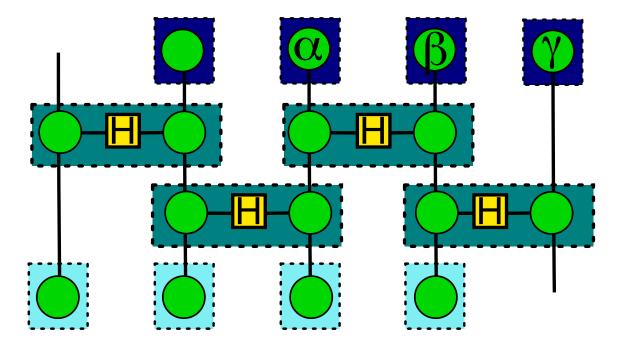
Incorporating Phases

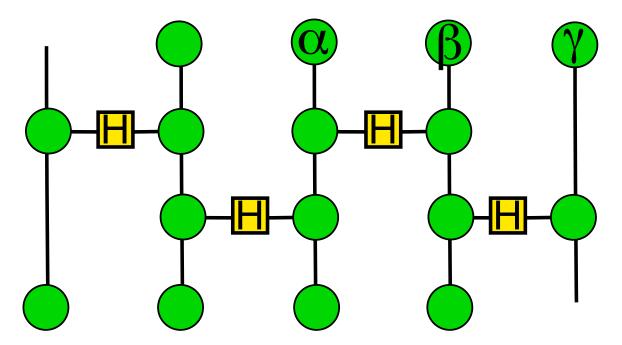
Generalised Spider Law

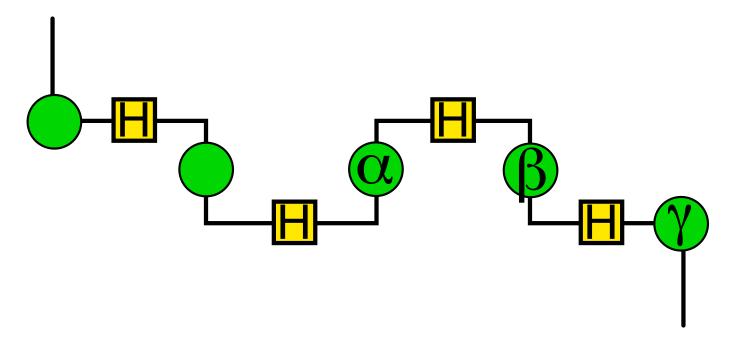


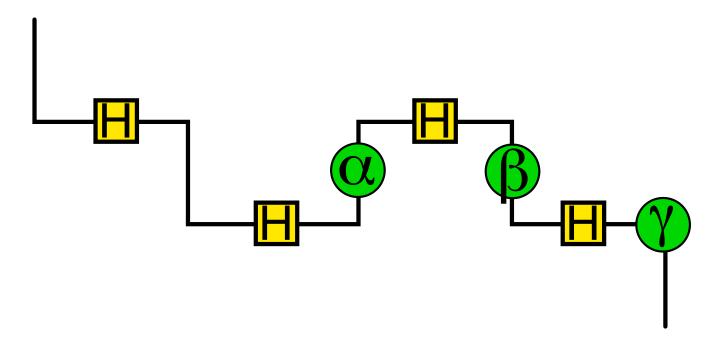
Proposition 2. If U is a unitary on \mathbb{C}^2 there exist α, β, γ such that $U = Z_{\alpha} X_{\beta} Z_{\gamma}$.

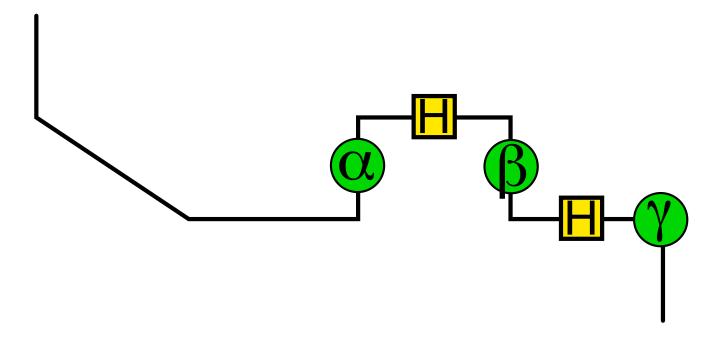
Here is (part of) a measurement based program to compute this:

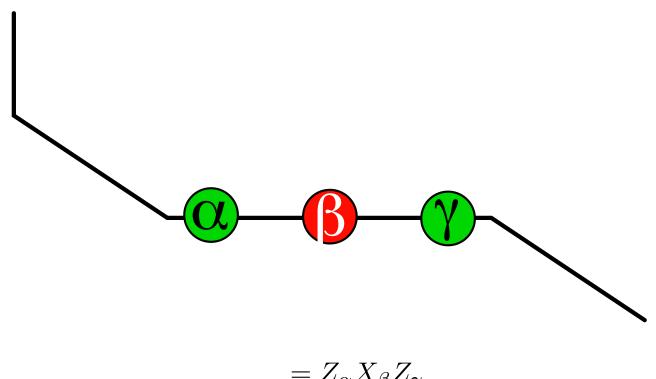




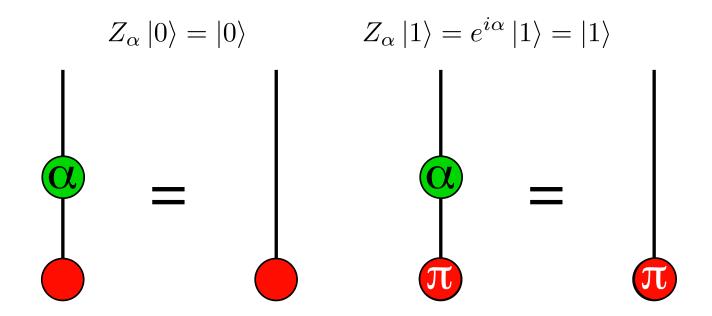




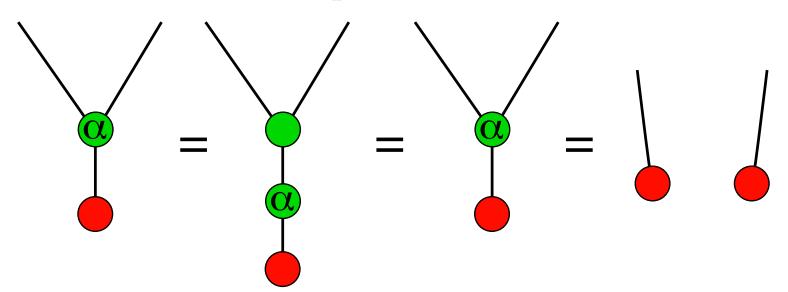




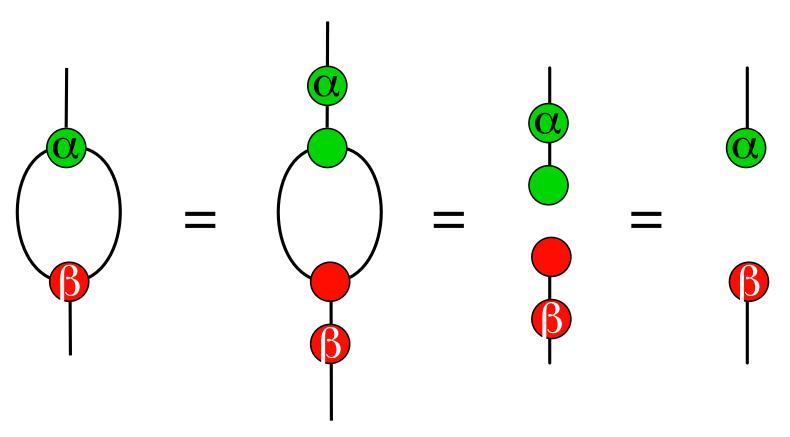
How do phases interact?



How do phases interact?



How do phases interact?



"Negation"

$$X_{\pi} = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} :: \begin{cases} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{cases}$$

$$Q \xrightarrow{\delta} Q \otimes Q$$

$$X \downarrow \qquad \qquad X \downarrow \qquad \qquad X$$

$$Q \xrightarrow{\delta} Q \otimes Q$$

$$Q \otimes Q$$

"Negation"

"Negation"

$$X :: |0\rangle + e^{i\alpha} |1\rangle \mapsto e^{i\alpha} |1\rangle + |0\rangle = |0\rangle + e^{-i\alpha} |1\rangle$$

$$= -\alpha$$

Representing Controlled Phase

$$\wedge Z_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\alpha} \end{pmatrix} = -\alpha/2$$

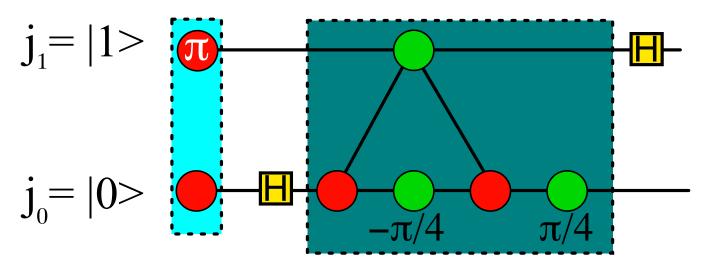
Among the most important quantum algorithms, the quantum fourier transform is a key stage of factoring.

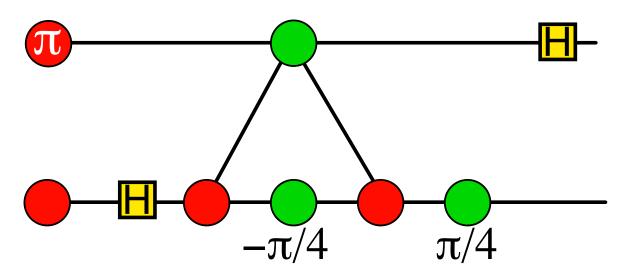
$$|j_0j_1\cdots j_n\rangle \mapsto (|0\rangle + e^{2\pi i\alpha_0}|1\rangle)(|0\rangle + e^{2\pi i\alpha_1}|1\rangle)\cdots(|0\rangle + e^{2\pi i\alpha_n}|1\rangle)$$

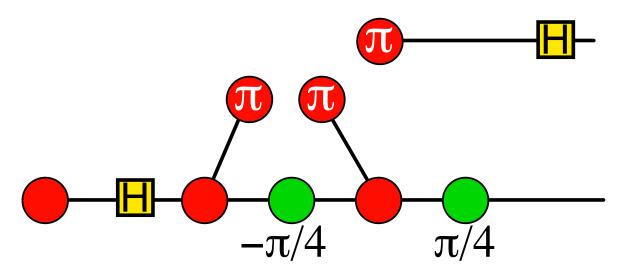
where
$$\alpha_k = 0.j_k \cdots j_n = \sum_{l=k}^n j_l/2^k$$

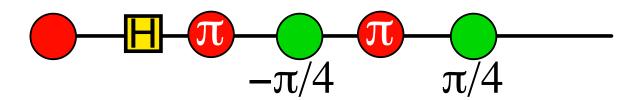
For 2 qubits:

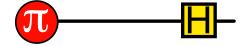
$$|00\rangle \mapsto (|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \qquad |10\rangle \mapsto (|0\rangle + e^{i\pi} |1\rangle)(|0\rangle + |1\rangle) |01\rangle \mapsto (|0\rangle + e^{i\pi/2} |1\rangle)(|0\rangle + e^{i\pi} |1\rangle) \qquad |11\rangle \mapsto (|0\rangle + e^{i3\pi/2} |1\rangle)(|0\rangle + e^{i\pi} |1\rangle)$$

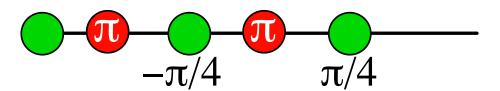


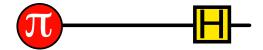


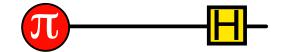


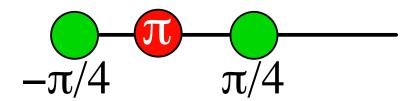


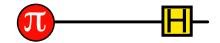




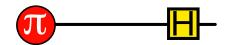


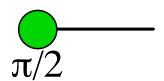


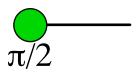




$$\pi/4$$
 $\pi/4$







which is the correct result!

Conclusions

- Pairs of incompatible observables form a Hopf algebra-like structure.
- This structure captures a fundamental aspect of quantum mechanics.
- The axioms are sufficiently strong to derive the properties of quantum logic gates and prove the correctness of important quantum algorithms.

Questions and Further Work

- What about completeness?
 - Are two observables sufficient?
 - Can we prove that there is another maximally unbiassed basis for the qubit?
 - What about other dimensionalities?
- How special is the choice of the H map?
- Formal properties:
 - Confluence? Termination?
 - Can this be mechanized?
 - Induction principals for reasoning about graphical rewriting?
- We simulated the QFT algorithm: what is the complexity of this simulation? Can complexity be studied in this setting?