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Knots, computation and materials 
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Topo Systems 

Jones polynomials 
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Ising & Fibonacci 
  



Antikythera mechanism 

Computers 

Analogue computer Digital computer: 0 & 1 

Robotron Z 9001 



•  Computational complexity 
Problems that can be solved in: 

-polynomial time    (easy) 
-exponential time  (hard) 

as a function of input size. 

•  Classical computers: 
 P:      polynomially easy to solve 
 NP:   polynomially easy to verify solution 

 
•   BQP: polynomially easy to solve with QC 
 
 

Quantum computers: Why? 



•  Factoring 

 
 quantum hackers exponentially better than 
classical hackers! 

•  Searching objects: where is ❥? 

 ¢®¶!¤ê♬ΙΠÃ≥⅙"⏎✜ì?»Ψ~!$^✪❥⅖ű

•  Errors during QC are too catastrophic. 

Quantum computers: Why? 



Topology promises to solve the 
problem of errors that inhibit 

the experimental realisation of 
quantum computers… 

Topological quantum computers: Why? 

…and it is a lot of fun :-) 



•  Geometry 
–  Local properties of object 

•  Topology 
–  Global properties of object 

Geometry – Topology 
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Are two knots equivalent? 
Topology of knots and links 

€ 

⇔
topo. 

• Algorithms exist from the ‘60s 
• Extremely time consuming… 
• Common problem (speech recognition, …) 
• Mathematically Jones polynomials can recognise 
if two knots are inequivalent. 



Topological quantum effects 

Aharonov-Bohm effect 
Magnetic flux    and charge 

€ 

e− € 

Φ

Ψ(x) → eineΦ Ψ(x)

 The phase is a function 
   of winding number 
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Topological effect: 
    is the integer number 
of rotations 
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Particle statistics 

Exchange two identical particles: 
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2 ×
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=

Ψ(x1, x2 ) = ??? Ψ(x2, x1)
€ 

x1

€ 

x2

Statistical symmetry:  
Physics stays the same, but     could change! Ψ



Anyons and statistics 

Ψ→Ψ

Ψ→Ψ π2ie

Bosons 

Fermions 

Ψ → ei2φ Ψ

Ψ → B Ψ

Anyons 

3D 

2D 

Anyons: vortices with flux & charge (fractional).  
Aharonov-Bohm effect ó Berry Phase. 



Anyonic properties can be found in 2-dimensional 
topological physical systems: 

• Fractional quantum Hall effect 
• Topological insulators 
• Cold-atom systems 

(a)!

Anyons and physical systems 

Ψ → ei2φ Ψ

Ψ → B Ψ

Anyons 

2D 

(b)!(c)!
[G. Palumbo & JKP,  
“C-S from lattice”, 

PRL 2013] 



Anyons, statistics and knots 
ti
m
e


Initiate: Pair creation of anyons 

Measure: do they fuse to the vacuum? 
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Anyons, statistics and knots 
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Anyons and knots 
Assume I can generate anyons in the laboratory. 

•  The state of anyons is efficiently 
    described by their world lines. 
 
•  Creation, braiding, fusion. 
 
•  The final quantum state of 

anyons  is invariant under 
continuous deformations of 
strands. 
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The Reidemeister moves 

Theorem:  
  
 Two knots can be 
deformed continuously 
one into the other iff 
one knot can be 
transformed into the 
other by local moves: 
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(II)
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(III)



Skein relations 
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Skein and Reidemeister  
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Reidemeister move (II) is satisfied. Similarly (III). 
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Kauffman bracket 
The Skein relations give rise to  
the Kauffman bracket:                
                   
                  Skein(      )= 

€ 
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= A + dA"1 = ("A)"3tFig. 8.16 The state sum for the “eight figure” link, L1. As it is a single twist of a simple loop it gives
hL1i = (�A)�3.
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= Ad + A"1 = ("A)3tFig. 8.17 The state sum for the inverted twisting, L2 is hL2i = (�A)3.

Measuring the work qubit in the x and y directions of the Bloch sphere finally gives the real
and imaginary parts of the normalised trace tr(⇢A(B))/2n, respectively (see Exercise 8.2).

8.4 Example I: Kauffman bracket of simple links

To familiarise ourselves with the Kau↵man bracket or state sum we now evaluate it for
some simple links. Our first example, L1, is the “eight figure” in Figure 8.16. Its state sum
is given by

hL1i = (�A)�3 (8.32)

as it involves a single twist. Similarly for the inverted twisting, L2, of Figure 8.17 we have
the value

hL2i = (�A)3. (8.33)

We now consider the link with two components, L3, shown in Figure 8.18. By employing
the state sums of the previous examples we easily obtain

hL3i = �A4 � A�4. (8.34)

Finally, we evaluate the link, L4, in Figure 8.19. Its state sum is given by

hL4i = A8 � A4 + 1 � A�4 + A�8. (8.35)

To evaluate the Jones polynomials of these links we need to apply relation (8.7) that states
VL(A) = (�A)3w(L)hLi. The first two links, L1 and L2 have w = 1 and w = �1 respectively,
so VL1 (A) = 1 and VL2 (A) = 1. Hence they have the same Jones polynomials for any A.
This is to be expected as they are both isomorphically equivalent to a simple loop. On the
other hand, w(L3) = 2 and w(L4) = 0.
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= A8 " A4 +1" A"4 + A"8tFig. 8.19 A non-trivial single component link, L4 with hL4i = A8 � A4 + 1 � A�4 + A�8.

8.5 Example II: Jones polynomials from Chern-Simons
theories

Here we investigate how the Jones polynomials can be derived from the SU(2) Chern-
Simons theories that we studied in Chapter 7. The specific form of the Jones polynomials
was determined by introducing the Skein relations, in Figure 8.7. Here, we demonstrate
that the expectation values of Wilson loops hW(L)i in the SU(2) Chern-Simons theories
can be decomposed in the same way as the state sums do under Skein relations. This
decomposition is compatible with the Reidemeister moves II and III. The invariance of
this expectation value under continuous deformations of the loop L means that hW(L)i is
invariant under twists of the loop as well. This property is the Reidemeister move I that
finally identifies hW(L)i with the Jones polynomials.

Let us see in detail how the SU(2) Chern-Simons theory is compatible with the Skein
relations. Consider the expectation value hW(L)i of a link L in space M = S 3. We take
all link components to be in the two-dimensional fundamental representation of SU(2). A
useful bipartition of the link L is given in Figure 8.20(a). There, one part, LR, includes
a single crossing of two strands and the other part, LL, includes the rest of the link. The
corresponding spaces are denoted MR and ML, respectively. Substituting the crossing in
MR with any of the two shapes in M0R or M00R undoes the braiding between the two relevant
strands and gives a simpler link. In terms of the expectation value hW(L)i this substitution
is motivated in the following way. Consider the individual parts ML and MR. Each one
supports a two-dimensional Hilbert spaceHR, as they correspond to the fusion of the four
points that are given by the intersections of the link and the dotted sphere, shown in Figure
8.20(a). As these points are all described by the fundamental representation of SU(2), as
in (7.56), they have only two possible fusion outcomes. So the Hilbert space HR is two-
dimensional. Let us denote the vectors that correspond to MR, M0R and M00R as  ,  0 and  00,
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The Skein relations give rise to  
the Kauffman bracket:                
                  Skein(      )= 
 
     

€ 

VL (A) = (−A)3w(L ) L (A)

)(Lw         is the writhe of link. For an oriented link it is 
the sum of the signs for all crossings   

1+ 1−

To satisfy move (I) one needs to define  
Jones polynomial: 

Jones polynomial 

€ 

L (A)



Jones polynomial 
The Skein relations give rise to  
the Kauffman bracket:                
                  Skein(      )= 
 
     To satisfy move (I) one needs to define  
Jones polynomial: 
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• If two links have different Jones polynomials 
then they are inequivalent  

 => use it to distinguish links  
 
• Jones polynomials keep: 

  only topological information, no geometrical 

Jones polynomial 



Jones polynomial from anyons 
Braiding evolutions of anyonic states: 

| finali = Bn...B2B1| initiali

h initial| finali = h initial|Bn...B2B1| initiali

• Simulate the knot with braiding 
anyons 
• Translate it to circuit model:  
    <=>   find trace of matrices 

=
1

dn/2�1
hL(B)i



Jones polynomial from QC 

[Freedman, Kitaev, Larsen, Wang (2002);  
Aharonov, Jones, Landau (2005); 
Kauffman, Glaser et al. (2009); 

Kuperberg (2009)] 

Evaluating Jones polynomials is a #P-hard 
problem.  
 
Belongs to BQP class. 
 
With quantum computers it is polynomially easy 
to approximate with additive error. 



Summary 

Jones polynomials are used 
for quantum applications: 
• encrypt quantum information  
• quantum money 
• … 

Topological systems that can 
support anyons are currently 
engineered...  
 
http://quantum.leeds.ac.uk/~jiannis 



Book 



Letter from Faraday to Whewell (1834) 



1. Take a certain number of different anyons 
1, a, b, ... 

 the vacuum (1) and one or more non-trivial 
particles 

 
2. Define fusion rules between them 

      1×a=a, a×b=c+d+..., a×a=1+... 
 The vacuum acts trivially. Each particle has an 
anti-particle (might be itself or not). 

 
 - Abelian anyons axb=c 
 - Non-Abelian anyons axb=c+d+... 

Inception of Anyonic Models 



Braiding and Fusion properties 

•  The action of braiding of two anyons depends on 
their fusion outcome: 

Rc
ab is a phase factor 

 
 
•  Changing the order of fusion is non-trivial: 

=Rc
ab 

a b 

c 

a b 

c 

i j 

a b c a b c 

d d 
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j
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abc)(F



The braid group Bn 

The braid group Bn has elements b1, b2, …, bn-1 

that satisfy: 
 
 
Pictorially: 

niforbbbbbb
jiforbbbb

iiiiii

ijji

<≤=

≥−=

+++ 1

2||,

111

ijji bbbb =
111 +++ = iiiiii bbbbbb



3. The F and B matrices are determined from the 
Pentagon and Hexagon identities 
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Inception of Anyonic Models 



3. The F and B matrices are determined from the 
Pentagon and Hexagon identities 
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Inception of Anyonic Models 



Ising Anyons 
Consider the particles: 1, σ and ψ 
 
Fusion rules: σ×σ=1+ψ, ψ×ψ=1, σ×ψ=σ 
 

σ 

σ σ σ σ σ σ σ 

d2=2 
d4=4 
d6=8 
d8=16 

… 
dn=2n/2 increase in dim of Hilbert space  

1 
ψ 

σ 
σ 

1 
ψ 
1 
ψ 

σ 
σ 
σ 
σ 

σ 
σ 

1 



Ising Anyons 

ψ,...1,Ψ
1,1,...Ψ

=

=

All these states span the 
fusion Hilbert space. 
 
Braiding neighboring 
anyons transforms states 

Consider the particles: 1, σ and ψ 
 
Fusion rules: σ×σ=1+ψ, ψ×ψ=1, σ×ψ=σ 
 

σ 

σ σ σ σ σ σ σ 

1 
ψ 

σ 
σ 

σ 
σ 



Ising Anyons 
Consider the particles: 1, σ and ψ 
 
Fusion rules: σ×σ=1+ψ, ψ×ψ=1, σ×ψ=σ 
 
From 5-gon and 6-gon identities we have: 
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Rotation of basis states 



Ising Anyons 
Braiding  ⎟⎟
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Clifford group:  
non-universal! 



Ising Anyons 

Qubit initialization: 

Measurement: Outcome of pairwise fusion, 1 or ψ 
 
Gates: Clifford group. Non-universal! 
One needs a phase gate: employ interactions 
between anyons. 
 
Can be employed as a quantum memory. 

xzHH σσ =

σ 

σ 

σ σ 

1 

σ 

σ 

σ σ 

ψ 

State |0> State |1> 



•  Assume we can: 
–  Create identifiable anyons 
   vacuum pair creation 

–  Braid anyons 
   Statistical evolution: 
   braid representation B 

–  Fuse anyons 
      

tim
e 

Fusion Hilbert space: 
ψσσσσ →→ ,,1,

ψ

ψ

σ σ σ σ

ψσσ +=× 1

1

1

Ising Anyons 



Fibonacci Anyons 
Consider anyons with labels 1 or τ with the fusion 
properties: 1×1=1, 1×τ = τ, τ×τ =1+τ 

τ 

τ τ τ τ τ τ τ 

d1=1 
d2=2 
d3=3 
d4=5 
d5=8 

… 

Fibonacci 
sequence! 
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φ nnd

Golden mean 

Dimension of 
Hilbert space 

τ 



Fibonacci Anyons and QC 
Qubit encoding: Evolving a qubit: 

=Rc
ab 

=ΣjFi
j 

Unitaries B and F are dense in SU(2). 
[Freedman, Larsen, Wang, CMP 228, 177 (2002)] 
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Fibonacci Anyons and QC 
Qubit encoding: Evolving a qubit: 

=Rc
ab 

=ΣjFi
j 

  
Extends to SU(dn) when n anyons are employed. 

i j 

a b 
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a b 

c 
τ 

τ 

τ τ 
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τ τ 

j τ τ τ τ τ τ 

τ τ 
Unitaries B and F are dense in SU(2).  



Fibonacci Anyons and QC 
Qubit encoding: 

  
Extends to SU(dn) when n anyons are employed. 

τ 

τ 

τ τ 

i 

τ 

τ 

τ τ 

j 

Unitaries B and F are dense in SU(2).  

CNOT 



Conclusions 
•  Topological Quantum Computation promises to 

overcome the problem of decoherence and 
errors in the most direct way. 

•  There is lots of work to be done to make anyons 
work for us. 

•  Is it worth it? 

Aesthetics says YES! 


