Reframing SU(1,1) interferometry

Introduction
 II. Itinerant signal, persistent modes
 III. Persistent signal, itinerant modes
 a. In situ characterization of (lossy) pLONs for randomized boson sampling
 b. Quantum illumination illuminated

Carlton M. Caves

Center for Quantum Information and Control, University of New Mexico

C. M. Caves, "Reframing SU(1,1) interferometry, Advanced Quantum Technologies 3, 1900138 (2020), <u>arXiv:1912.12530</u>

I. Introduction

Oljeto Wash Southern Utah

SU(2) and SU(1,1) interferometry

B. Yurke, S. L. McCall, and J. R. Klauder, PRA 33, 4033 (1986)

FIG. 1. A Mach-Zehnder interferometer. Light entering one of the two input ports $a_{1 \text{ in}}$ or $a_{2 \text{ in}}$ is split into two beams by beam splitter S1. The two light beams b_1 and b_2 accumulate a phase shift ϕ_1 and ϕ_2 , respectively, before entering beam splitter S2. The photons leaving the interferometer are counted by detectors D1 and D2.

To beat the quantum noise limit (QNL), put squeezed vacuum into the antisymmetric port.

FIG. 6. An SU(1,1) interferometer. The beam splitters of a conventional interferometer have been replaced by the fourwave mixers FWM1 and FWM2. The light pumping FWM2 is phase shifted from the light pumping FWM1 by the angle ψ .

LIGO: M. Tse *et al.*, PRL **123**, 231107 (2019). Virgo: F. Acernese *et al.*, PRL **123**, 231108 (2019).

Done in LIGO/Virgo O3. Event rate up from about 1/month to 1/week.

SU(2) and SU(1,1) interferometry

B. Yurke, S. L. McCall, and J. R. Klauder, PRA 33, 4033 (1986)

Experiments:

J. Jing, C. Liu, Z. Zhou, Z. Y. Ou, and W. Zhang, Appl Phys Lett **99**, 011110 (2011). Optical

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, Nat Comm **5**, 3049 (2014). Optical

B. Chen, C. Qiu, S. Chen, J. Guo, L. Q. Chen, Z. Y. Ou, and W. Zhang, PRL **115**, 043602 (2015). Atom-light hybrid

C. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J. Lewis-Swan, K. V. Kheruntsyan, and M. K. Oberthaler, PRL **117**, 013001 (2016). BEC

B. E. Anderson, P. Gupta, B. L. Schmittberger, T. Horrom, C. Hermann-Avigliano, K. M. Jones, and P. D. Lett, PRA **95**, 063843 (2017). Truncated optical

B. E. Anderson, P. Gupta, B. L. Schmittberger, T. Horrom, C. Hermann-Avigliano, K. M. Jones, and P. D. Lett, Optica **4**, 752 (2017). Truncated optical

M. Manceau, G. Leuchs, F. Khalili, and M. Chekhova, PRL **119**, 223604 (2017).

J. Li, Y. Liu, N. Huo, S. M. Assed, X. Li, and Z. Y. Ou, PRA **97**, 052127 (2018). Optical

P. Gupta, B. L. Schmittberger, B. E. Anderson, K. M. Jones, and P. D. Lett, Opt Exp **26**, 291 (2018). Truncated optical

S. Liu, Y.Lou, J. Xin, J.Jing, PR Applied 10, 064046 (2018). Optical

Y. Liu, N. Huo, J. Li, L. Cui, X. Li, and Z. J. Ou, Opt Exp **27** 011292 (2019). Optical

G. Frascella, E. E. Mikhailov, N. Takanashi, R. V. Zakharov, O. V. Tikhonova, and M. V. Chekhova, Optica **6**, 1233 (2019). Optical

FIG. 6. An SU(1,1) interferometer. The beam splitters of a conventional interferometer have been replaced by the fourwave mixers FWM1 and FWM2. The light pumping FWM2 is phase shifted from the light pumping FWM1 by the angle ψ .

Let's reframe this as linear force detection.

Persistent signal, itinerant probe oscillators (modes) (Part II)

VS.

Itinerant signal, persistent probe oscillators, examined repeatedly with QND or back-action-evading (BAE) measurements (Part I)

II. Itinerant signal, persistent modes

Holstrandir Peninsula overlooking Ísafjarðardjúp Westfjords, Iceland

Measuring one force quadrature: BAE (homodyne) measurements of quadrature component

- 1. Gravitational-wave tidal force on a metal-bar oscillator
- 2. Force on an opto-mechanical mode
- 3. Axion force on mode of a microwave resonator

Force *displaces* the mode's complex amplitude. Repeated measurements dominate the mode's coupling to the external world (e.g., dissipation).

Mode
$$\hat{a} = \frac{1}{\sqrt{2}}(\hat{x} + i\hat{p})$$

 \hat{a} , \hat{x} , and \hat{p} are constants in the rotating frame: \hat{a} is the phase-space *complex amplitude*; $\hat{x} = \hat{x}_1$ and $\hat{p} = \hat{x}_2$ are called *quadrature components*.

Measuring one force quadrature: BAE (homodyne) measurements of quadrature component

Measuring one displacement quadrature: Squeezing

Single-mode squeeze operator

$$S_{1} = e^{r(\hat{a}^{2} - \hat{a}^{\dagger 2})/2} = e^{ir(\hat{x}\hat{p} + \hat{p}\hat{x})/2}$$
$$\sigma^{2} = \frac{1}{2}e^{-2r}$$
$$S_{1}^{\dagger}\hat{x}S_{1} = \hat{x}e^{-r} \quad S_{1}^{\dagger}\hat{p}S_{1} = \hat{p}e^{r}$$

$$S_{1} dx E_{x}^{1/2} S_{1}^{\dagger} = dx \int dy \frac{e^{-(y-x)^{2}}}{\sqrt{\pi}} S_{1} |y\rangle \langle y| S_{1}^{\dagger}$$

$$= dx \int d(y e^{-r}) \frac{e^{-(y-x)^{2}}}{\sqrt{\pi}} |y e^{-r}\rangle \langle y e^{-r}|$$

$$= d(x e^{-r}) \int dy \frac{e^{-(y-x e^{-r})^{2}/2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}} |y\rangle \langle y|$$

$$= dx' E_{x'}^{\sigma^{2}}, \quad x' = x e^{-r}$$

 $S_1|y\rangle = e^{-r/2}|ye^{-r}\rangle$

Measuring one displacement quadrature: Squeezing

Measuring both displacement quadratures: Squeezing

Couple two oscillators to the same force (could be tricky, depending on circumstances, but not hard in axion detection). Measure *x* on one and *p* on the other.

Measuring both displacement quadratures: SU(1,1)

Two-mode squeeze operator

 $S_2 = e^{r(\hat{a}\hat{b} - \hat{a}^{\dagger}\hat{b}^{\dagger})}$ $B^{\dagger}S_2B = S_1 \otimes S_1^{\dagger}$

50-50 beamsplitter $B = e^{(\hat{a}\hat{b}^{\dagger} - \hat{a}^{\dagger}\hat{b})\pi/4}$ $B^{\dagger}\hat{a}B = \frac{1}{\sqrt{2}}(\hat{a} - \hat{b})$ $B^{\dagger}\hat{b}B = \frac{1}{\sqrt{2}}(\hat{a} + \hat{b})$

Phase-space displacement on only one oscillator

Measuring both displacement quadratures: SU(1,1)

x

 $x, \frac{1}{2}$

 $p, \frac{1}{2}$

 S_1

 $S_{\mathbf{1}}^{\dagger}$

 $D(\gamma)$

 $D(\gamma)$

 S_1^\dagger

 S_1

 $x, \frac{1}{2}$

 $p, \frac{1}{2}$

 S_1

 S_1^{\dagger}

 S_1^\dagger

 S_1

Measuring both displacement quadratures

The EPR variables $(x_a + x_b)/\sqrt{2}$ and $(-p_a + p_b)/\sqrt{2}$ are squeezed, displaced, and then unsqueezed, providing displacement sensitivity beyond the QNL.

- 1. An interferometer uses interference at the final beamsplitter to transform phase shifts in the arms into amplitude signals that can be measured by square-law detection.
- SU(1,1) interferometry works quite differently and isn't an interferometer at all. It is profitably reframed as a *displacement detector*, making BAE measurements of both quadrature displacements, using squeezing (noiseless deamplification) and unsqueezing (noiseless amplification) to achieve displacement sensitivity below the QNL, even though the measurements of quadrature components are not sub-QNL.

Measuring both displacement quadratures

The EPR BAE variables $(\hat{x}_a + \hat{x}_b)/\sqrt{2}$ and $(-\hat{p}_a + \hat{p}_b)/\sqrt{2}$ are measured repeatedly on a pair of oscillators with resolution better than the SNL.

Reframing SU(1,1)

- 1. An interferometer uses interference at the final beamsplitter to transform phase shifts in the arms into amplitude signals that can be measured by square-law detection.
- 2. SU(1,1) interferometry works quite differently and isn't an interferometer at all. It is profitably reframed as a *displacement detector*, making BAE measurements of both quadrature displacements, using squeezing (noiseless deamplification) and unsqueezing (noiseless amplification) to achieve displacement sensitivity below the QNL, even though the measurements of quadrature components are not sub-QNL.

Why is reframing important?

Thinking of SU(1,1) as an interferometer that detects phase changes leads to the wrong questions, such as thinking about the Heisenberg limit.

Reframing as a displacement detector focuses attention on the right questions: How much squeezing is available for noiseless amplification and de-amplification? How does one devise schemes that detect both displacement quadratures?

III. Persistent signal, itinerant modes

Dettifoss, Iceland

Persistent signal, itinerant modes

Interested in detecting a disturbance in mode *b* in repeated trials? Can use weak squeezing and measure all four quadrature components with heterodyne.

Truncated SU(1,1): omit second two-mode squeezer, and measure EPR quadratures at resolution σ .

Or, more generally, use the correlations of two-mode squeezed states to sense a disturbance on one of the modes.

III.a In situ characterization of (lossy) pLONs for randomized boson sampling

Western diamondback rattlesnake My front yard, Sandia Heights Variegated fairy wren Oxley Common, Brisbane

Characterization of pLON

Mean number of photons counted by Alice and into Bob's inputs is $N = M \sinh^2 r \simeq \sqrt{M}$ (birthday avoidance).

of Bob's pLON is $|-\alpha L \tanh r\rangle$.

Given Alice's heterodyne outcomes α . If Bob's heterodyne outcome for mode i which are drawn from thermal distribu- is 0, then $0 = \alpha L_i$ (statistically), with L_i tions, the input to Bob's pLON is the being the *i*th column of the transfer matrix. coherent state $|-\alpha \tanh r\rangle$; the output The second moments of Alice's heterodyne outcomes for this case determine L_i .

In situ characterization and randomized boson sampling

S. Rahimi-Keshari, S. Baghbanzadeh, and C. M. Caves, Physical Review A **101**, 043809 (2020),

Characterization runs

The second moments of Alice's heterodyne outcomes, conditioned on Bob's receiving vacuum in mode i, determine L_i .

Randomized boson sampling runs

A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L. O'Brien, and T. C. Ralph, PRL **113**, 100502 (2014).

Alice's single-photon counts produce a single photon into the corresponding inputs of Bob's pLON.

III.b Quantum illumination illuminated

True illumination is illuminating the unilluminatable.

Cable Beach Western Australia

Quantum illumination

R. Alexander and C. M. Caves, done, but paper not finished.

S. Lloyd, Science 321, 1463 (2008)

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, J. H. Shapiro, PRL **101**, 253601 (2008)

Quantum illumination

The regime of interest is a weak signal $(\theta \ll 1)$ buried in high-temperature noise $(\beta \ll 1)$, with weak squeezing $(r \ll 1)$, in which case the sectors are qubits spanned by $|0_n\rangle = |0, n\rangle$ and $|1_n\rangle = |1, n + 1\rangle$.

Problem: Detect a target against a background of thermal noise.

Pauli operators in qubit sectors

$$Z_{n} = |0, n\rangle \langle 0, n| - |1, n + 1\rangle \langle 1, n + 1|$$

$$X_{n} = |0, n\rangle \langle 1, n + 1| + |1, n + 1\rangle \langle 0, n|$$

$$Y_{n} = -i|0, n\rangle \langle 1, n + 1| + i|1, n + 1\rangle \langle 0, n|$$

Qubit sector *n*: rotation about Bloch *y* axis

$$|0,n\rangle = e^{iY_n \sin\theta \tanh r\sqrt{n+1}/Z_\beta} = X_n$$

Quantum illumination

Problem: Detect a target against a background of thermal noise.

Qubit sector *n*: rotation about Bloch *y* axis

$$|0,n\rangle = e^{iY_n \sin\theta \tanh r\sqrt{n+1}/Z_\beta} = X_n$$

The probability of error in distinguishing ρ_1 from ρ_0 is an average over the qubit sectors:

$$P_e = \frac{1}{2} \left(1 - \frac{\sin\theta \tanh r}{Z_\beta} \sum_{n=0}^{\infty} \frac{e^{-\beta n}}{Z_\beta} \sqrt{n+1} \right) \simeq \frac{1}{2} \left(1 - \frac{1}{2} \sqrt{\frac{\pi}{Z_\beta}} \sin\theta \tanh r \right)$$

Previous work—and there is lots of it—did not recognize the sector structure, nor specialize to the weak-squeezing approximation, and so did not find the qubit structure and the Helstrom optimal measurement.

Quantum illumination: Role of entanglement

Problem: Detect a target against a background of thermal noise.

The signal-idler two-mode squeezed state $|r\rangle$ is entangled. The bath-idler state ρ_1 is separable, but each qubit sector is entangled.

So is entanglement important and, if so, how?

The point of the initial entanglement is to introduce correlations between the signal and idler, which survive, though barely, as entangled correlations between bath and idler in each qubit sector. Quantum illumination lives on the *coherence* between $|0,n\rangle$ and $|1,n+1\rangle$ in each qubit sector, which is necessarily entanglement in the sector.

Quantum illumination: N-trial asymptotics

Problem: Detect a target against a background of thermal noise.

What I have said till now is not even close to the whole story. More important is the multi-trial asymptotics, where we have found the both the Helstrom error probability and the optimal measurement in the weak-squeezing approximation, and tight bounds on the error probability outside the weak-squeezing approximation.

This could be why it has taken forever to get our act together.

That's all, folks. Thanks for your attention.

Tent Rocks Kasha-Katuwe National Monument, Northern New Mexico