Cavity QED with Photonic Band Gap and Pillar Resonators

Iman Aghilian, Matthew Rakher, Susanna Thon, Hyochul Kim, Nick Stolz Stefan Strauf, Brian Gerardo, Antonio Badolato, Kevin Hennessy, Evelyn Hu,Pierre Petroff, and Dirk Bouwmeester

University of California, Santa Barbara

Interdisciplinary collaborations

Dirk Bouwmeester

Larry Coldren

Quantum Dots

Semiconductors

Periodic structure Energy bands

E E_{f} E_g ⁻ $h\nu$ \circ E_i

Quantum dots – artificial atoms

Colloidal QDs Epitaxial QDs

Molecular Beam Epitaxy growth (MBE)

Wetting layer

GaAs

due to Coulomb interaction:

 $\hbar\omega_{XX}$ \neq $\hbar\omega_X$

Photon correlation spectroscopy

ensemble

emission

(2)

g

 (τ)

=

τ

 $\left(l+1\right)$

 $^+$

τ

2

 (t)

I t

 $\left(t\right)$

 $I(t)I(t)$

nonclassical light (photon antibunching): $g^{(2)} (\tau = 0) = 0$ single quantum photon correlation function emitter

classical light (laser):

 $g^{(2)}(\tau)=1$

Individual quantum dots

InAs quantum dots embedded in **GaAs** matrix

1µm x 1µm AFM

- Dot size: 10-20 nm
- Emission: 900-950 nm
- Density gradient

Photon antibunching

Quantum Dots in Cavities

For a single mode the rms electric-field amplitude is

$$
E_{\text{vac}} = \sqrt{\frac{\lambda_1 \omega}{2\varepsilon V}} \quad .
$$

Coupling to this mode is characterized by the Rabi frequency $\Omega = \frac{DL_{vac}}{mc}$

 \overline{A}

DE

Spontaneous emission e f $E_e - E_f = \mu_0$

For a single mode the rms electric-field amplitude is

$$
E_{\text{vac}} = \sqrt{\frac{\lambda^{10}}{2\varepsilon V}} \quad .
$$

 λ

Coupling to this mode is characterized by the Rabi frequency . DE _{vac}

The probability of photon emission per unit time (Einstein A coefficient) is given by $\Gamma_0 = 2\pi \Omega^{-2} \frac{\rho_0(\omega)}{\omega}$ with the mode density $\rho_0(\omega) = \omega^2 V / \pi^2 c^3$. The probability to find the system at time t in state e (system prepared in e at $t=0$) is $P_e(t) = e^{-\theta t}$. 3 $2\pi\Omega^{-2}$ $\frac{\mu}{\rho}$ 0 ρ $_{0}$ (θ) $\Gamma_0 = 2\pi \Omega^{-2} \frac{\rho_0(\omega)}{2}$ with the mode density $\rho_0(\omega)$ $\rho_{0}(\omega) = \omega^{2} V / \pi^{2} c^{3}$ $P_e(t) = e^{-\Gamma_0 t}$

Spontaneous emission e f $E_e - E_f = \mu_0$

For a single mode the rms electric-field amplitude is

$$
E_{\text{vac}} = \sqrt{\frac{4100}{2\epsilon V}} \quad .
$$

Coupling to this mode is characterized by the Rabi frequency . $\overline{11}$ $\Omega = DE_{\text{vac}}$

The probability of photon emission per unit time (Einstein A coefficient) is given by $\Gamma_0 = 2\pi \Omega^{-2} \frac{\rho_0(\omega)}{\omega}$ with the mode density $\rho_0(\omega) = \omega^2 V / \pi^2 c^3$. The probability to find the system at time t in state e (system prepared in e at $t=0$) is $P_e(t) = e^{-\theta t}$. 3 $2\pi\Omega^{-2}$ $\frac{\mu}{\rho}$ 0 ρ $_{0}$ (θ) $\Gamma_0 = 2\pi \Omega^{-2} \frac{\rho_0(\omega)}{2}$ with the mode density $\rho_0(\omega)$ $\rho_{0}(\omega) = \omega^{2} V / \pi^{2} c^{3}$ $P_e(t) = e^{-\Gamma_0 t}$

In an optical cavity (quality factor $Q = \omega/\Delta \omega_c$) the mode density and mode volume are drastically changed. **Off resonance: inhibition of SE**

Spontaneous emission e f $E_e - E_f = \mu_0$

For a single mode the rms electric-field amplitude is

$$
E_{\text{vac}} = \sqrt{\frac{410}{2\epsilon V}} \quad .
$$

Coupling to this mode is characterized by the Rabi frequency . $\overline{11}$ $DE_{\mathrm vac}$

The probability of photon emission per unit time (Einstein A coefficient) is given by $\Gamma_0 = 2\pi \Omega^{-2} \frac{\rho_0(\omega)}{\omega}$ with the mode density $\rho_0(\omega) = \omega^2 V / \pi^2 c^3$. The probability to find the system at time t in state e (system prepared in e at $t=0$) is $P_e(t) = e^{-\theta t}$. 3 $2\pi\Omega^{-2}$ $\frac{\mu}{\rho}$ 0 ρ $_{0}$ (θ) $\Gamma_0 = 2\pi \Omega^{-2} \frac{\rho_0(\omega)}{2}$ with the mode density $\rho_0(\omega)$ $\rho_{0}(\omega) = \omega^{2} V / \pi^{2} c^{3}$ $P_e(t) = e^{-\Gamma_0 t}$

In an optical cavity (quality factor $Q = \omega/\Delta \omega_c$) the mode density and mode volume are drastically changed. **On resonance enhancement:** $\Gamma_{cav} \cong \Gamma_0 \frac{\Sigma^N}{V}$ *Q cav* 3 0 λ $\Gamma_{\alpha} \cong \Gamma$ Purcell factor

Optical microcavities

Oxide apertured micropillars

Enhanced light extraction

45 times enhancement of single photon stream emitted by a **single QD**

Two types of results

Single Photon Source with integrated gates

Charge control outside cavity region

outside

Mode splitting

Very small mode volume: strong coupling between EM field and embedded structures

2D photonic crystal membrane cavities

Inhibition of single QD emission

Single QD lifetimes

10x inhibition of SE

Photonic crystal cavity design I

Square lattice (S1) Mode localized at semiconductor/air interface

 $x(\mu m)$

1

"Random QD positioning" Poor QD properties at interface

Photonic crystal cavity design II

Size and position optimized for high **Q** and high **n**_{eff}

Field stays away from interface

Side View

Mode volume **V ~ 0.68(**λ**/n) 3 Effective index n**_{eff} ~ 2.9 Q-factor (in theory) **> 200000**

Measured Q **~ 18000 GaAs** !

Low density of QDs

QD density $5-50 \mu m^{-2}$ from AFM

Mode volume from FDTD

QDs are spectrally distributed over 50-100 nm

Sharp exciton resonance

Chance of **~ 1%** for both spatial and spectral coupling

Only **1-3 QDs** are within the mode !

No pronounced coupling is expected

Lasing!?!?

Lasing threshold behavior

Single QDs are broadband emitters

• charged states X^+ , X^0 , X^-

• bi- and multi Xs

• acoustic phonon coupling

QD interaction with surrounding matrix provides **indirect** but **robust** coupling

Single QDs are broadband emitters

