
Information gain and 
approximate reversibility of 

quantum measurements
[see arXive:quant-ph/0702166v3]

Francesco Buscemi, ERATO-SORST QCI Project, JST

in collaboration with Masahito Hayashi and Michał Horodecki

IICQI 2007, Kish Island, Iran, September 9th, 2007



Overview

Definition of information gain

Definition of disturbance

Balance of information

Tradeoff for general measurements

(Single-outcome analysis)

(Relation with previous proposals: 
Grönewold-Lindblad-Ozawa, Maccone)



The setting

Let us given an input state ρQ

defined on the input (finite dimensional) Hilbert space H Q



The setting

Let us given an input state ρQ

defined on the input (finite dimensional) Hilbert space H Q

Let |ΨRQ〉be a purification ofρQ

where           is an auxiliary “reference” systemH
R



The setting

Let us given an input state ρQ

defined on the input (finite dimensional) Hilbert space H Q

Let |ΨRQ〉be a purification ofρQ

where           is an auxiliary “reference” systemH
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Let the measurement on
be described by the POVM

H
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It is a natural choice for many reasons. In particular:
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...exactly as Holevo quantity is considered a natural upper 

bound to the accessible information.
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The formalism of quantum instruments is the most general 
setting to describe the full statistics of a quantum measurement. 
An instrument         is defined as follows:I

Q

Quantum instruments

a set of maps                    in one-to-one 
correspondence with the measurement 
outcomes is given

the probability of obtaining the m-th 
outcome is

the “a posteriori” state, given the m-th 
outcome, is

{Em}m∈X

p(m) := Tr[Em(ρQ)]

ρQ′

m := Em(ρQ)/p(m)
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Given the input state and the instrument, we define the 
disturbance as the conditional coherent information loss

δ(ρQ,I Q) := S(ρQ) −
∑

m

p(m)IR′
→Q′

c (ρR′Q′

m )

where I
A→B
c (σAB) := S(σB) − S(σAB)
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quantifies how well a channel preserves coherence. So, in a 
measurement process it is natural to consider the same quantity, 
conditioned on the outcomes.

Theorem (generalization of [Schumacher and Westmoreland, QIC (2002)] 
and [Barnum, Nielsen, and Schumacher, PRA (1998)])

there exist channels                   such that

given a set of channels                   it holds that

{Rm}m∈X

{Rm}m∈X

F e(ρQ,
∑

m

Rm ◦ Em) ≥ 1 −

√

2δ(ρQ, I Q)

δ(ρQ, I Q) ≤ h

(

1 − F e(ρQ,
∑

m

Rm ◦ Em)

)
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The global reference+system+apparatus state after the 
measurement can be written w.l.o.g. as follows

which in turn implies that          is pure, that means, 
reference+system, given the m-th outcome, is 
factorized from the rest of the universe

ρ
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Rewriting disturbance
δ(ρQ,I Q) = S(ρQ) −

∑

m

p(m)(S(ρQ′

m ) − S(ρR′Q′

m ))

δ(ρQ,I Q) = IR′
:E′

X (ΥR′E′
X )

In other words, the disturbance equals the total correlations 
between the reference and the apparatus:

where ΥR′E′
X := TrQ′ [ΥR′Q′E′

X ]
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=
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namely, it represents the average amount of correlations 
between the reference and the internal degrees of freedom of the 
apparatus.

Usually, apparatus internal degrees of freedom are out of our 
control, and the information gain is strictly less than the 
disturbance introduced.
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