Lost in Translation

Elham Kashefi

University of Oxford

OXFORD

Overview

• Two models for Quantum Computing:

Quantum Circuits

Measurement-based quantum computing (MBQC)

Structural Relations

Causal Structure

Parallelism

Quantum Circuit

A directed **acyclic** graph where degree 1 nodes are either input or output and other nodes are unitary gate. An arbitrary subset of the inputs (outputs) are labelled *auxiliary (result*).

$$H := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$P(\alpha) := \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$
$$\wedge Z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Cyclic Quantum Circuit

Quantum Circuit with Measurements

Theorem. [Aharonov, Kitaev, Nisan] Qcircuit with measurement gates is computationally equivalent to Qcircuit with measurements performed only at the end.

Measurement-based QC

• Teleportation Protocol (Bennett, Brassard, Crépeau, Jozsa, Peres and Wootters)

• Gate Teleportation (Gottesman and Chuang)

• One-way quantum computer (Raussendorf and Briegel)

Measurements play a central role. However, measuring induces non-deterministic evolutions. This probabilistic drift can be controlled.

Elements of MBQC

- Initial entangled state (graph state)
- Angles of measurements
- Classical Control

A formal language

- N_i prepares qubit in $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- M_i^{α} projects qubit onto basis states $\frac{1}{\sqrt{2}}(|0\rangle \pm e^{i\alpha}|1\rangle)$ (measurement outcome is $s_i = 0, 1$)
- E_{ij} creates entanglement
- Local Pauli corrections X_i , Z_i
- Feed forward: measurements and corrections commands are allowed to depend on previous measurements outcomes.

$$C_i^s \qquad [M_i^\alpha]^s = M_i^{(-1)^s \alpha} \qquad s[M_i^\alpha] = M_i^{\alpha + s\pi}$$

V. Danos, EK, P. Panangaden, Journal of ACM, 2007

Example

 $\mathfrak{H} := (\{1,2\},\{1\},\{2\},X_2^{s_1}M_1^0E_{12}N_2^0)$

starting with the input state $(a|0\rangle + b|1\rangle)|+\rangle$ we have

$$(a|0\rangle + b|1\rangle)|+\rangle \xrightarrow{E_{12}} \frac{1}{\sqrt{2}}(a|00\rangle + a|01\rangle + b|10\rangle - b|11\rangle)$$
$$\xrightarrow{M_1^0} \begin{cases} \frac{1}{2}((a+b)|0\rangle + (a-b)|1\rangle) & s_1 = 0\\ \frac{1}{2}((a-b)|0\rangle + (a+b)|1\rangle) & s_1 = 1 \end{cases}$$

$$\xrightarrow{X_2^{s_1}} \quad \frac{1}{2}((a+b)|0\rangle + (a-b)|1\rangle)$$

Patterns of Computation

 $(V, I, O, A_n \dots A_1)$

Patterns are composed sequentially or parallel

The model is universal and closed under composition

Generating Patterns

V. Danos, EK, P. Panangaden, Phys Rev. A., 2006

MBQC vs Qcircuit

- Physical implementation, Fault Tolerance
- Equivalent in Computational Complexity
- Logarithmic separation in Depth Complexity
- Translation forward and backward
 - Automated Scheme for Parallelising
 - Information Flow
 - Verification

Causal Flow - Feed forward mechanism

- Determinism
- Translation to Circuits
- Direct Pattern Synthesis
- Depth Complexity

Danos and Kashefi, Phys. Rev. A, 2006, Browne, Kashefi, Mhala and Perdrix, New. Journal of Physics 2007

Determinism

A pattern is **deterministic** if all the branches are the same.

A necessary and sufficient condition for determinism based on **geometry** of entanglement is given by flow

Correcting Measurements

$$\mathfrak{J}(\alpha) := X_2^{s_1} M_1^{-\alpha} E_{12}$$

Flow

Definition. An entanglement graph (G, I, O) has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

$$\begin{array}{ll} - & (i) & x \sim f(x) \\ - & (ii) & x \preceq f(x) \\ - & (iii) & \text{for all } y \sim f(x) \text{, we have } x \preceq y \end{array}$$

Flow

Definition. An entanglement graph (G, I, O) has flow if there exists a map $f: O^c \to I^c$ and a partial order \preceq over qubits

$$\begin{array}{ll} - & (i) & x \sim f(x) \\ - & (ii) & x \preceq f(x) \\ - & (iii) & \text{for all } y \sim f(x) \text{, we have } x \preceq y \end{array}$$

Flow

Theorem. A pattern with flow is uniformly and strongly deterministic.

Patterns with flow

Unitary embedding

From Pattern to Circuit

Star Pattern: $X_2^{s_1} M_1^{\alpha} E_{12} E_{13} \cdots E_{1n}$

Star Decomposition

Theorem. Every pattern such that the underlying graph state has flow can be decomposed into star patterns.

Patterns with flow Quantum Circuit

Star Decomposition

Generalised Flow

Correcting with a set of qubits instead of one qubit.

Generalised Flow

Correcting with a set of qubits instead of one qubit.

Generalised Flow

Definition. An entanglement graph (G, I, O) has generalised flow if there exists a map $f: O^c \to \mathcal{P}^{I^c}$ and a partial order \leq over qubits

- (i)
$$i \notin g(i)$$
 and $i \in \text{Odd}(g(i))$,
- (ii) if $j \in g(i)$ and $i \neq j$ then $i < j$,
- (iii) if $j \leq i$ and $i \neq j$ then $j \notin \text{Odd}(g(i))$

 $Odd(K) = \{u, |N_G(u) \cap K| = 1 \mod 2\}$

Theorem. A pattern is uniformly, strongly and step-wise deterministic if and only if its graph has a generalised flow.

Star Decomposition

What's the Problem ?

Observation. There exists a subclass of cyclic circuits implementing unitary operator !

Syntactic Characterisation

Vicious Cycle. A closed path with no two consecutive non-flow edges.

Lemma. Any gflow leads to a flow with possible vicious cycles.

Syntactic Characterisation

Theorem. A cyclic circuit obtained from a pattern with gflow has only following types of vicious cycles:

(i) Line loop

(ii) Crossing loop

A Topological Rewriting Rule

A Topological Rewriting Rule

Summary- MBQC vs Qcircuit

What next

- Deterministic patterns vs. quantum circuit
- Complexity analysis, exact trade off
- Physical implementation of the loop entangled state
- Connection with *timelike loop*, Deutsch, Bennett and Schumacher

Time-like Loop (Deutsch, Bennett and Schumacher)

Interaction with one's past self using an exotic physical time machine !

time-reversed portion of trajectory

Time-like Loop (Deutsch, Bennett and Schumacher)

Time-travel can be simulated using entanglement and post selection.

Computation Depth

How can we obtain a parallel algorithm for a given task?

Depth complexity

Fault Tolerant Implementation

MBQC. The longest feed-forward chain QCircuit. The Layers number

Depth Complexity

All the models for QC are equivalent in computational power.

Theorem. There exists a logarithmic separation in depth complexity between MQC and circuit model.

Parity function: MQC needs 1 quantum layer and $O(\log n)$ classical layers whereas in the circuit model the quantum depth is $\Omega(\log n)$

A. Broadbent and E. Kashefi, MBQC07

Parallelising Quantum Circuits

Theorem. Forward and backward translation between circuit model and MQC can only decrease the depth.

Parallelising Quantum Circuits

Characterisation

Theorem. A pattern has depth d + 2 if and only if on any influencing path we obtain $P^*N^{i \leq d}P^*$ after applying the following rewriting rule:

$$N P_1^* \alpha_1 \beta_1 P_2^* \alpha_2 \beta_2 \cdots P_k^* N \begin{cases} NN & \text{if } \forall P_i^* \neq X(XY)^* \\ N & \text{otherwise} \end{cases}$$

Example

Can be parallelised to a pattern with depth 2