

Quantum informatics context of this work

"What is the true origin of quantum algorithmic speed-up?"

"How do quantum and classical information interact?"

"What are the limits of quantum computation?"

What is a convincing model thereof?"

"What are the foundational structures of QIC?"

Foundational Structures for QIC

— FET Open (2006) EC STREP-network —

Bristol	Richard Jozsa
Braunschweig	Reinhard Werner
Grenoble	Philippe Jorrand
Innsbruck	Hans Briegel
McGill	Prakash Panangaden
Paris 7	Vincent Danos
Oxford	Samson Abramsky
York	Sam Braunstein
Coordination	Bob Coecke

Ended 2nd out of 500 submissions for an FP6 open call!

Our approach: rebuild QM from scratch!

A , B , C , \ldots

• e.g. electron, atom, n qubits, classical data, ...

A , B , C , \ldots

• e.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

 $A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \dots$

• e.g. preparation, acting force field, measurement, ...

 A, B, C, \dots

• e.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

 $A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \dots$

• e.g. preparation, acting force field, measurement, ...

Sequential composition of operations:

 $A \xrightarrow{h \circ g} C := A \xrightarrow{g} B \xrightarrow{h} C \qquad A \xrightarrow{1_A} A$

 A, B, C, \dots

 \bullet e.g. electron, atom, n qubits, classical data, ...

Operations/experiments on systems:

 $A \xrightarrow{f} A, A \xrightarrow{g} B, B \xrightarrow{h} C, \dots$

• e.g. preparation, acting force field, measurement, ...

Sequential composition of operations: $A \xrightarrow{h \circ g} C \xrightarrow{} = A \xrightarrow{g} B \xrightarrow{h} C \qquad A \xrightarrow{1_A} A$

Multiplicity of systems/operations:

 $A \otimes B \qquad \qquad A \otimes C \xrightarrow{f \otimes g} B \otimes D$

= tensor category

= tensor category

There are graphical calculi comprising these!

= tensor category

There are graphical calculi comprising these!

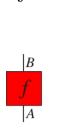
graphical language for \otimes -categories: $\otimes \sim horizontal \circ \sim vertical$

= tensor category

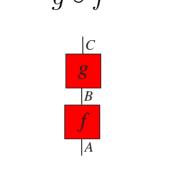
There are graphical calculi comprising these!

graphical language for \otimes -categories: $\otimes \sim horizontal \circ \sim vertical$

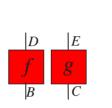
provable from categorical axioms \iff derivable in graphical language

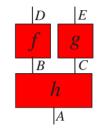


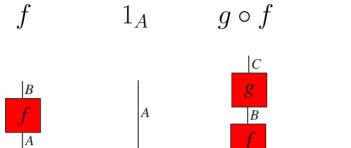
A

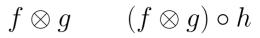


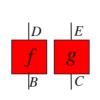
 $f \qquad 1_A \qquad g\circ f \qquad f\otimes g \qquad (f\otimes g)\circ h$

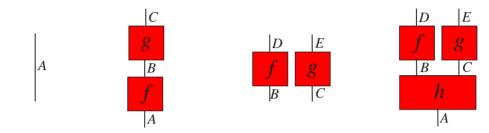


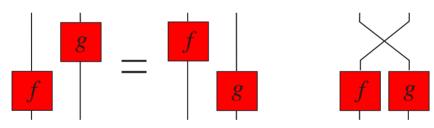


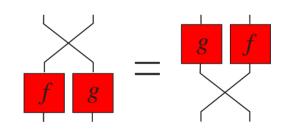


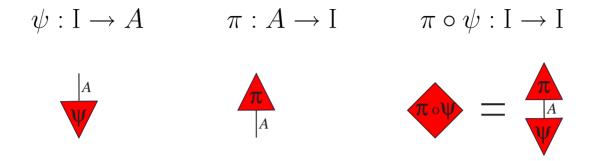


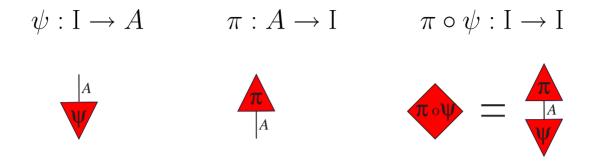




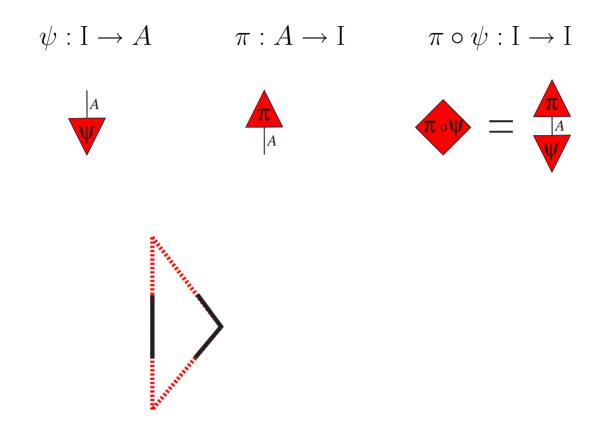


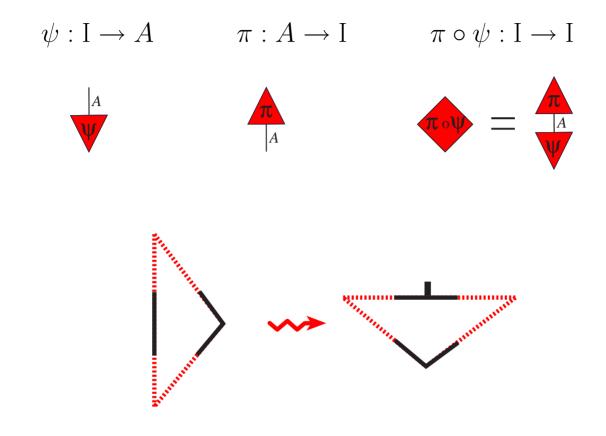


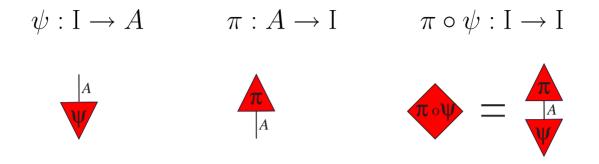




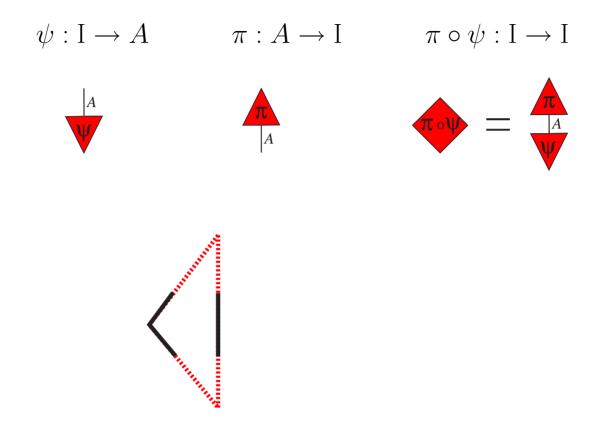
 $|\rangle$

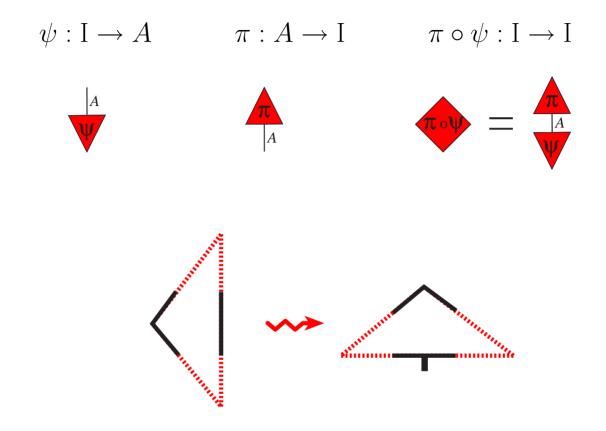


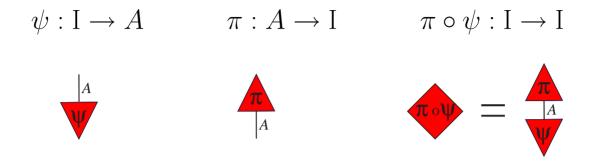




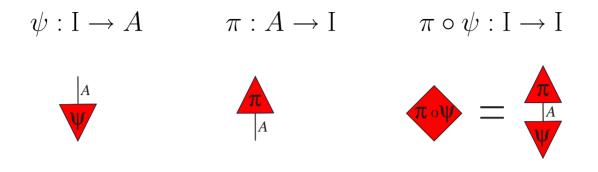
< |

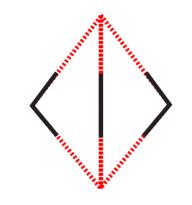


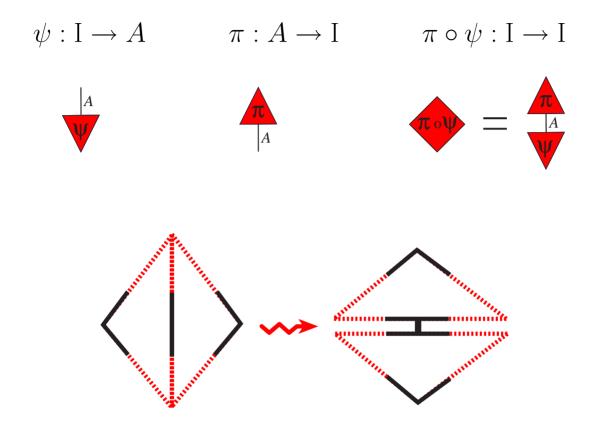


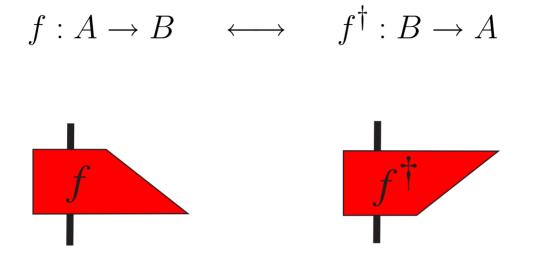


$\langle | \rangle$









QUANTUM STRUCTURE

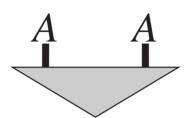
Abramsky-Coecke (2004) IEEE-LiCS

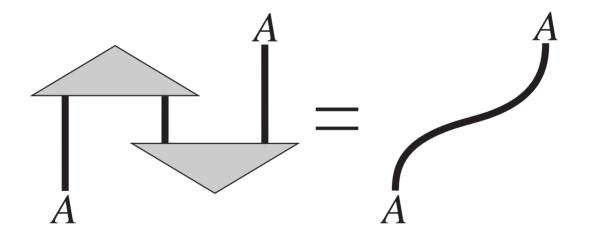
Kelly-Laplaza (1980) Coherence for compact closed categories. Selinger (2007) †-Compact categories and CPMs.

Empirical fact: entangled states exist in nature

Empirical fact: entangled states exist in nature

Quantum structure := Bell-states exist + their behaviour

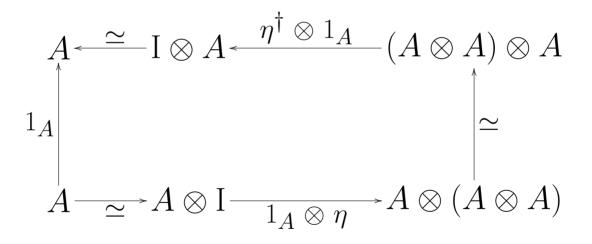


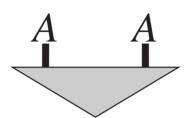


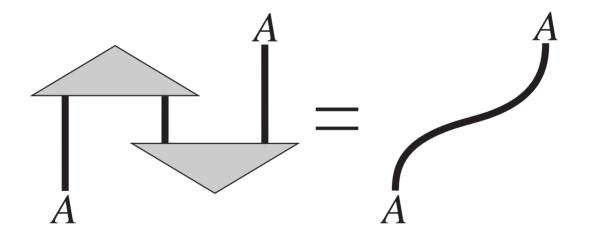
A pair

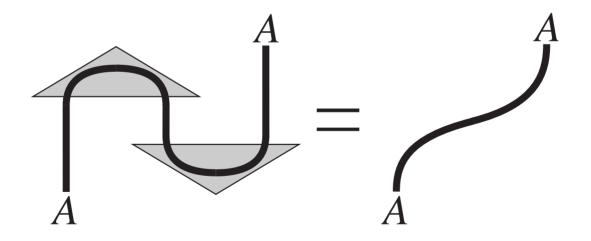
$$(A\,,\eta:\mathbf{I}\to A\otimes A)$$

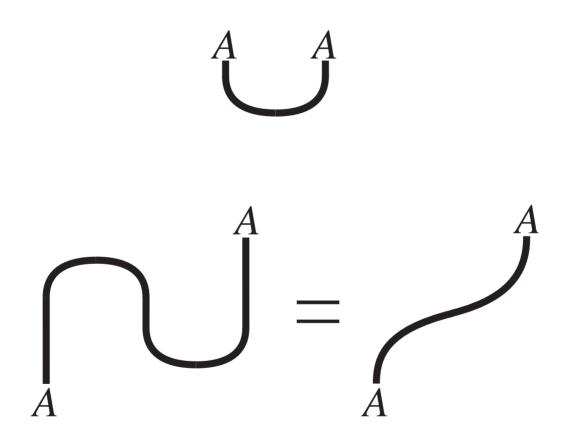
such that:

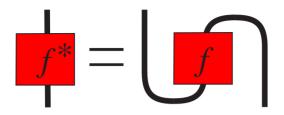


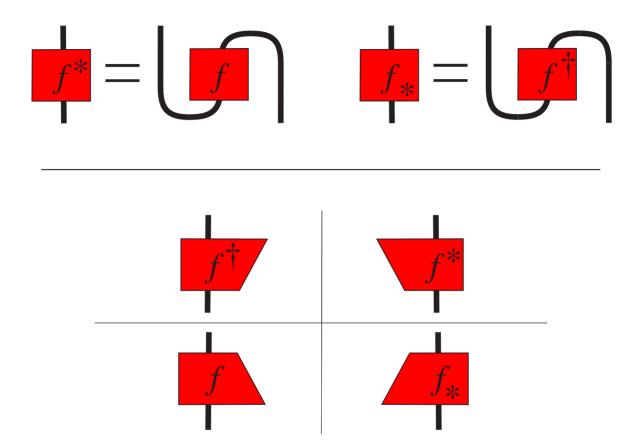




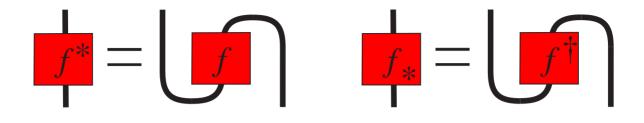


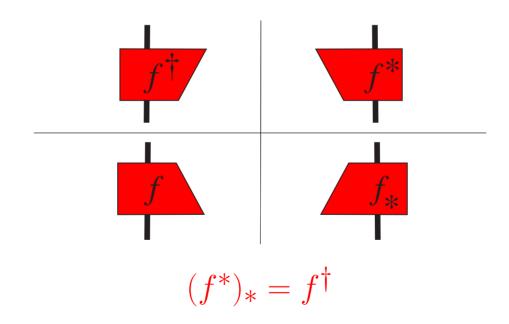


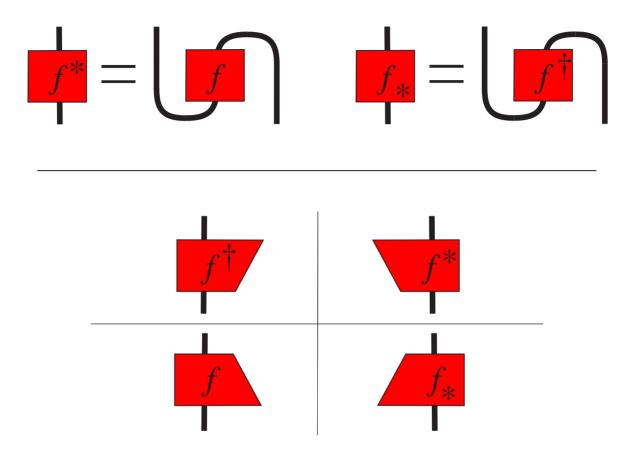




Graphical representation captures their relations

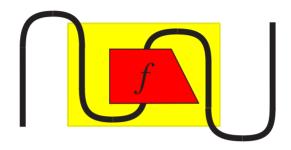




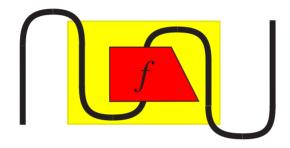


In Hilb: $f^* \sim$ transposed & $f_* \sim$ conjugated

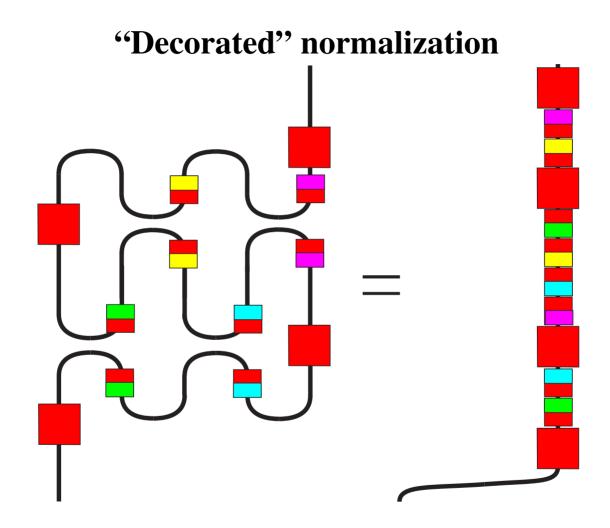
"Sliding" boxes

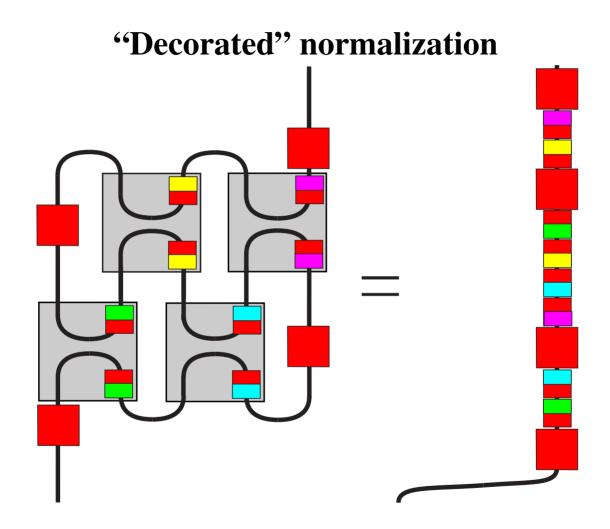


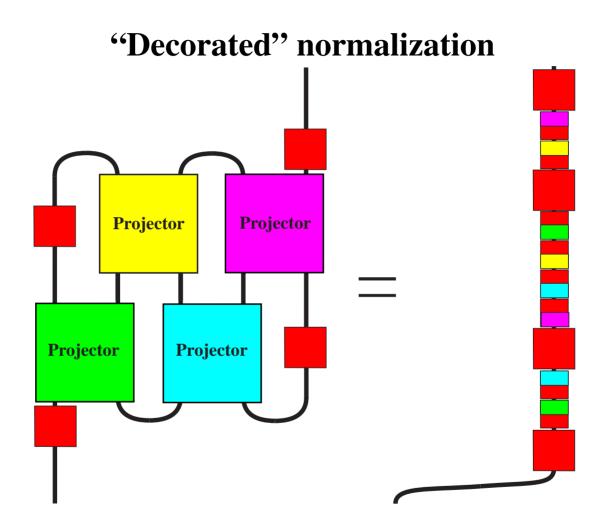
"Sliding" boxes



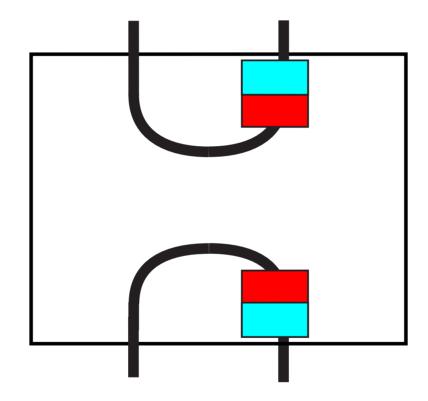
$f = f^* = f$



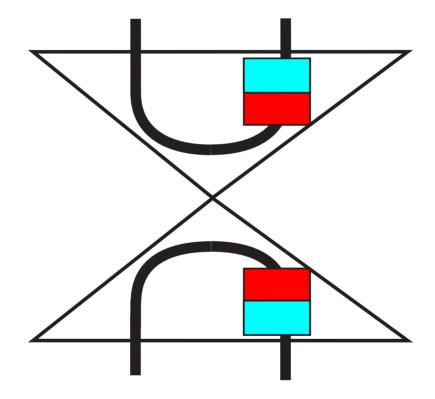




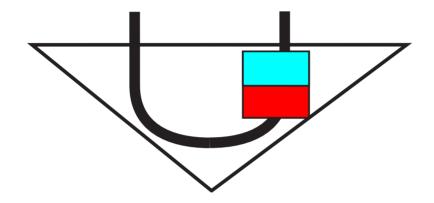
Bipartite projector



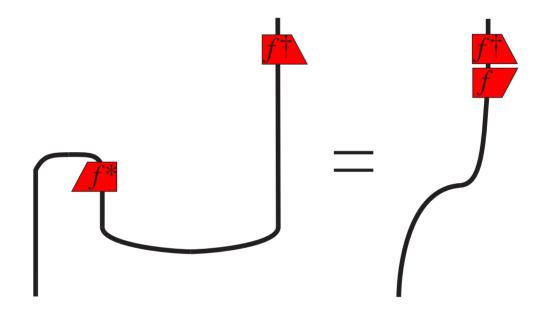
Bipartite ket & bra

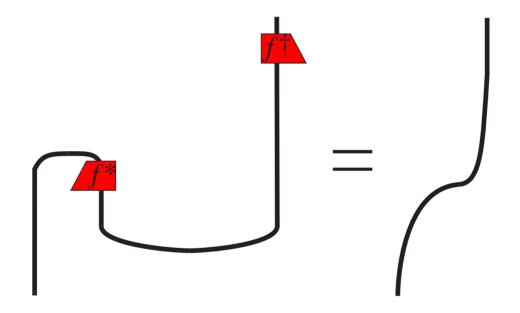


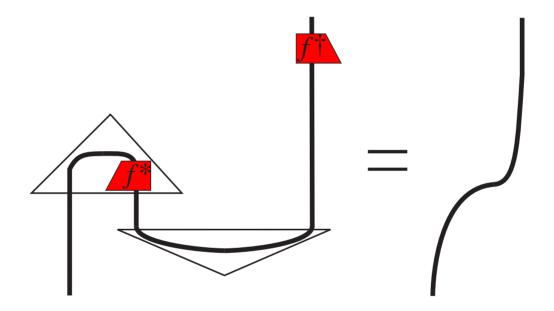
Bipartite state

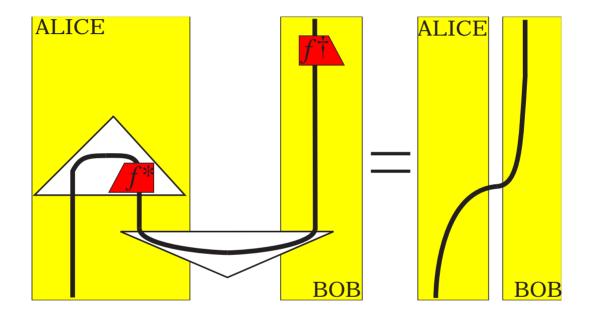


\Rightarrow Jamiolkowski isomorphism



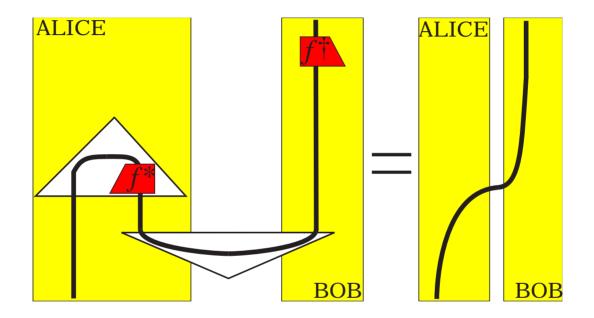




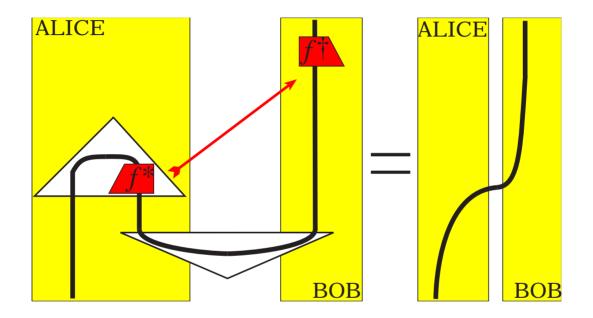


\Rightarrow Quantum teleportation

Classical data flow?



Classical data flow?



CLASSICAL STRUCTURE

Coecke-Pavlovic (2006) quant-ph/0608035v1

Carboni-Walters (1986) Cartesian bicategories I.

quantum data cannot be cloned nor deleted quantum data cannot be cloned nor deleted

classical data CAN be cloned and deleted NON-FEATURE: quantum data cannot be cloned nor deleted

FEATURE: classical data CAN be cloned and deleted NON-FEATURE: quantum data cannot be cloned nor deleted

FEATURE: classical data CAN be cloned and deleted

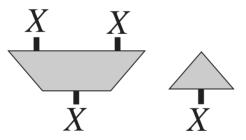
Classical data comes with cloning and deleting:

$$(X, \delta: X \to X \otimes X, \epsilon: X \to \mathbf{I})$$

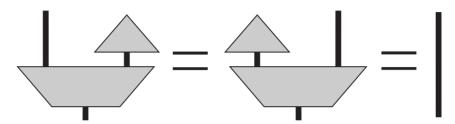
NON-FEATURE: quantum data cannot be cloned nor deleted

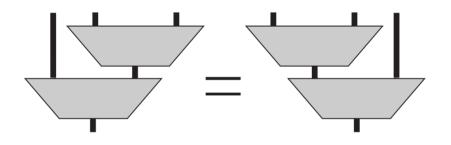
FEATURE: classical data CAN be cloned and deleted

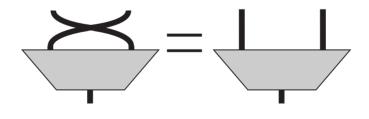
Classical data comes with cloning and deleting:



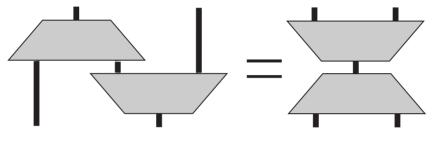
System with classical structure



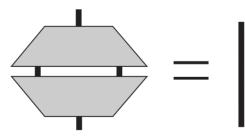




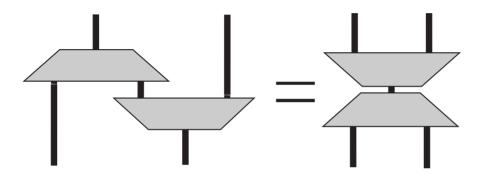
System with classical structure

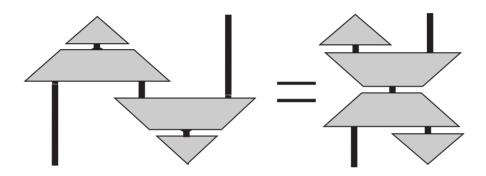


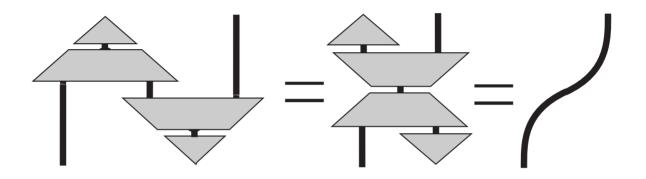
"Frobenius" (Carboni-Walters 1987 *Cartesian bicategories* I)



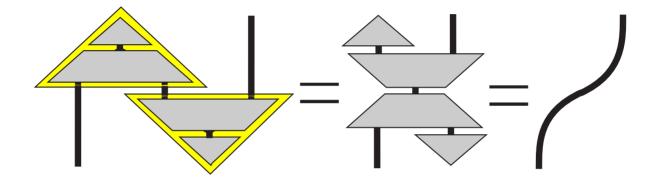
"normalisation"



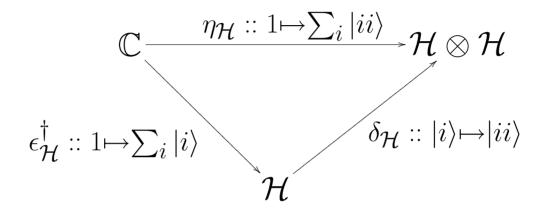




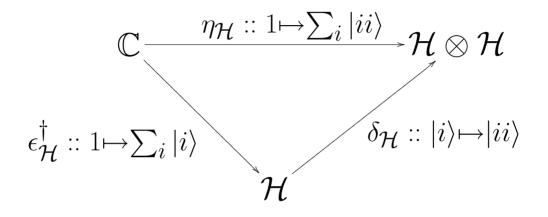
Classical structure \Rightarrow **quantum structure**



In Hilb the Bell-state decomposes as:



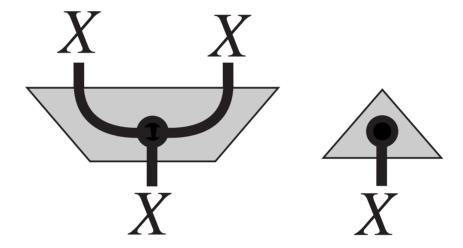
In Hilb the Bell-state decomposes as:



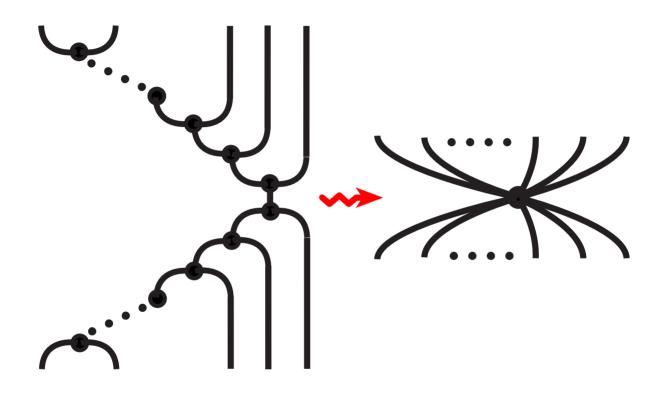
This "refinement" specifies a base!

"What's inside the box?"

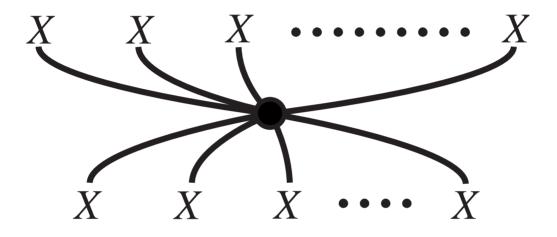
"What's inside the box?"



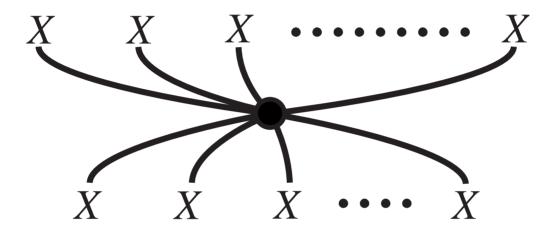
Notational convention:



Normalisation theorem: A "connected" network build from δ , δ^{\dagger} , ϵ , ϵ^{\dagger} admits a 'spider-like' normal form:



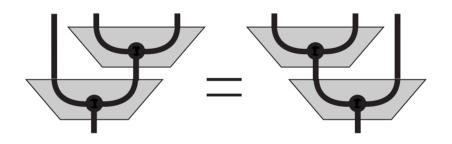
Kock, J. (2003) Frobenius algebras and 2D TQFTs. Coecke-Paquette (2006) POVMs & Naimark's thm without sums. Normalisation theorem: A "connected" network build from δ , δ^{\dagger} , ϵ , ϵ^{\dagger} admits a 'spider-like' normal form:

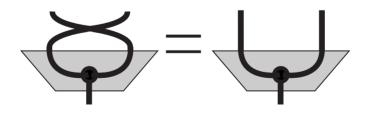


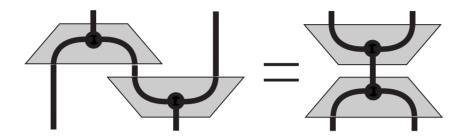
proof ~ "fusion" of dots \Rightarrow graphical rewrite system

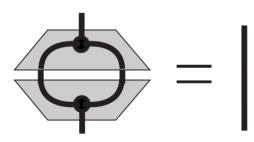
Kock, J. (2003) Frobenius algebras and 2D TQFTs. Coecke-Paquette (2006) POVMs & Naimark's thm without sums.





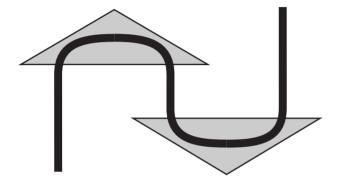




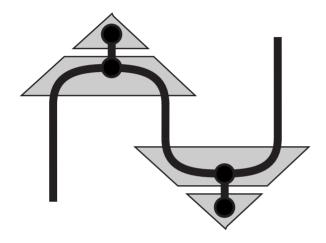


All five axioms follow from spider-normal-form.

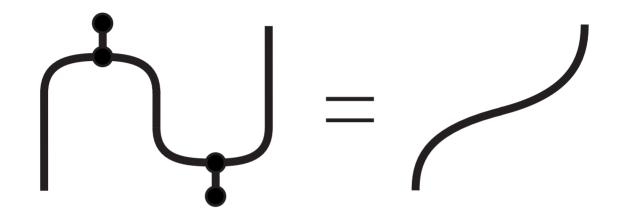
Summary: refining quantum structure



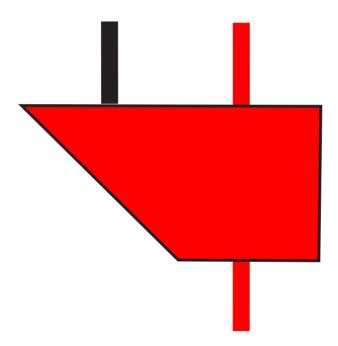
Summary: refining quantum structure

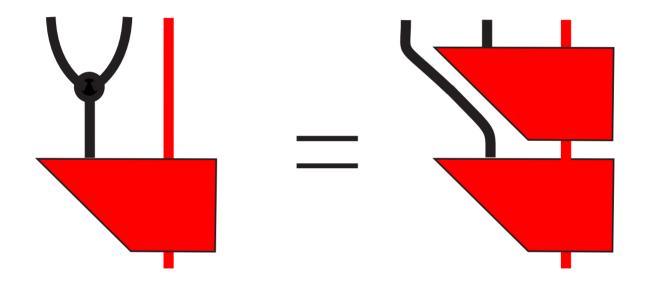


Summary: refining quantum structure

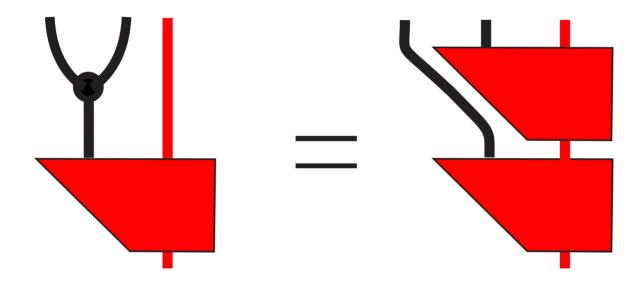


QUANTUM-CLASSICAL FLOW

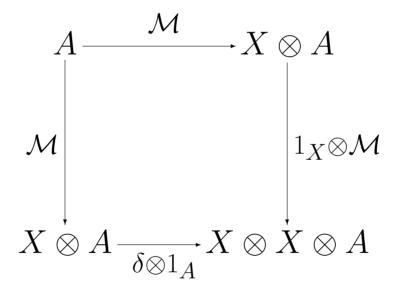


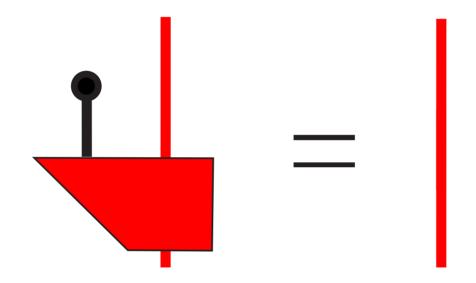


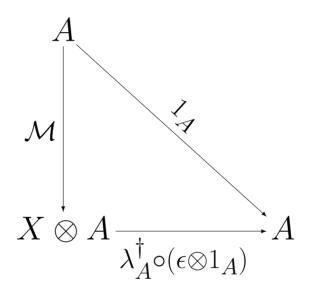
$\mathcal{M}: A \to X \otimes A$



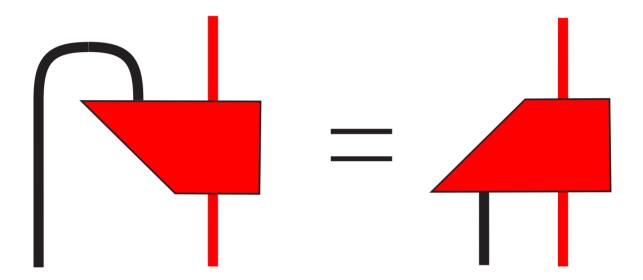
\Rightarrow von Neumann projection postulate.







$\mathcal{M}: A \to X \otimes A$



\Rightarrow "indexed" self-adjointness.

Thm. Self-adjoint Eilenberg-Moore coalgebras for $\mathcal{H}\otimes -: \operatorname{FdHilb} \to \operatorname{FdHilb}$ are exactly dim \mathcal{H} -outcome quantum measurements.

Thm. Self-adjoint Eilenberg-Moore coalgebras for $\mathcal{H}\otimes-:\mathbf{FdHilb}\rightarrow\mathbf{FdHilb}$

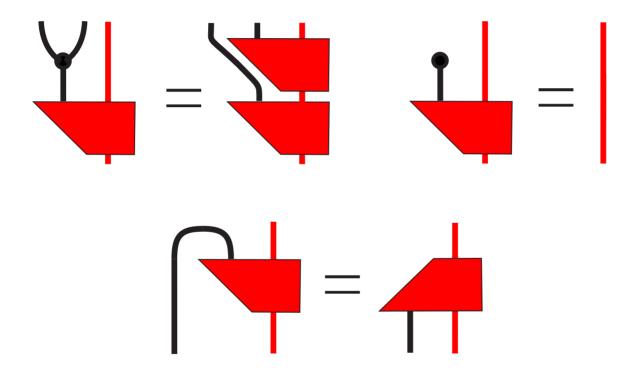
are exactly dim \mathcal{H} -outcome quantum measurements.

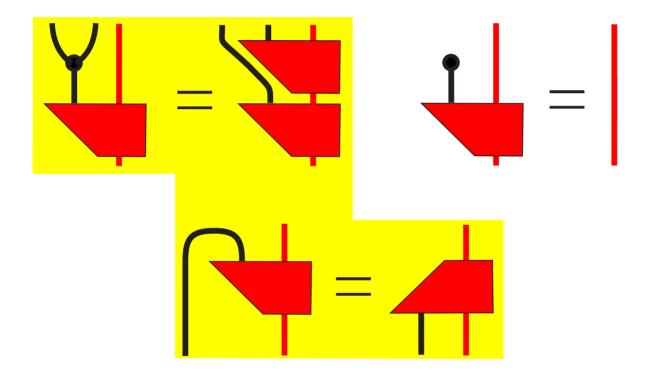
Coalg-square ⇒ idempotence mutual orthogonality Coalg-triangle ⇒ Completeness of spectrum Self-adjointness ⇒ Orthogonality of projectors

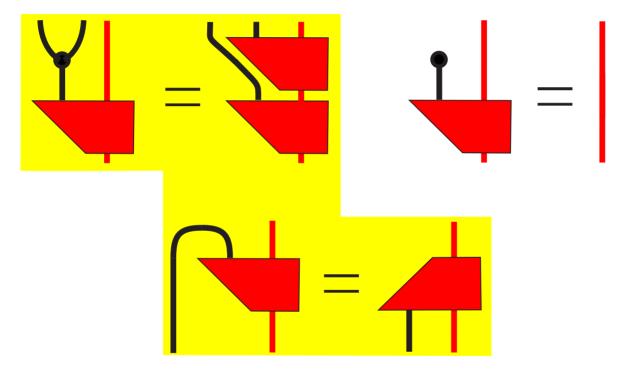
 $P_i^2 = P_i$ $P_i \circ P_{j \neq i} = \mathbf{0}$

 $\sum_i \mathbf{P}_i = 1_{\mathcal{H}}$

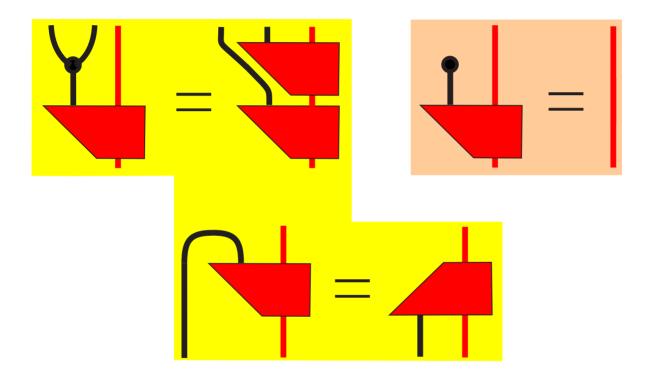
 $\frac{\mathbf{P}_i^{\dagger} = \mathbf{P}_i}{\mathbf{PROJECTOR}}$ SPECTRUM

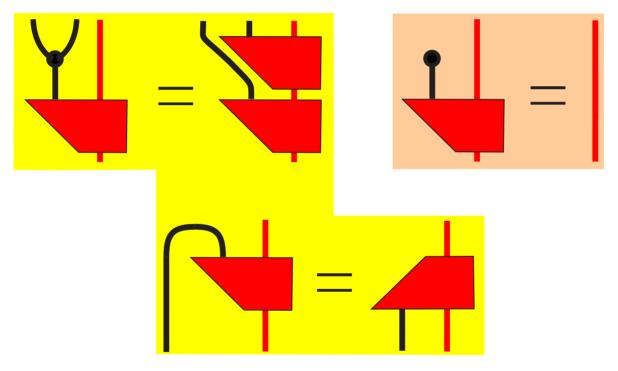




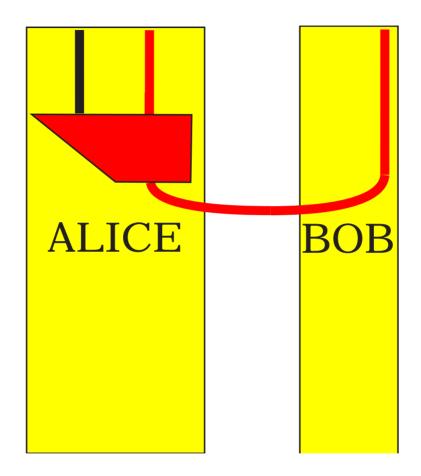


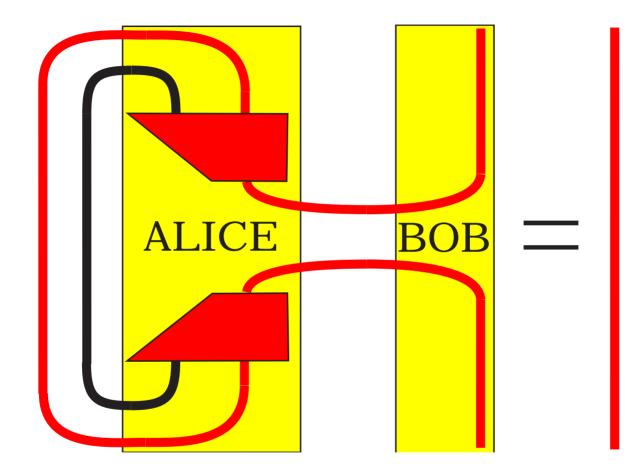
Minimal requirements for reasonable notion of measurement

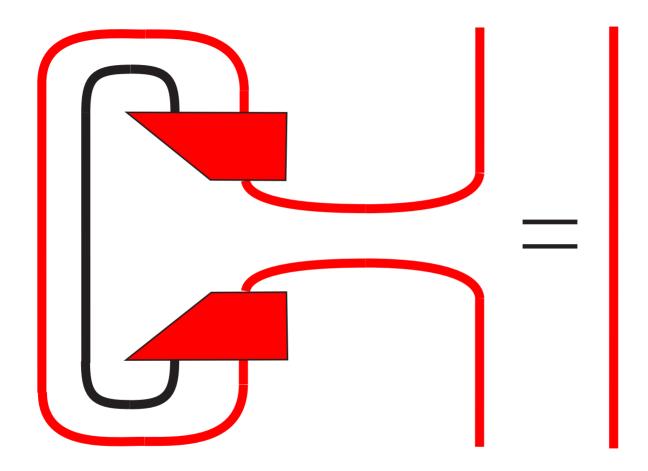


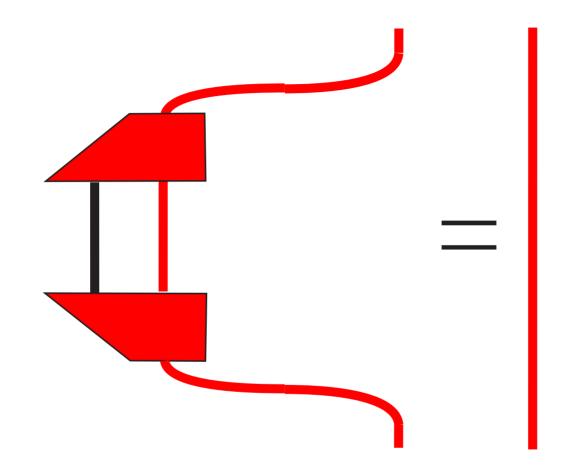


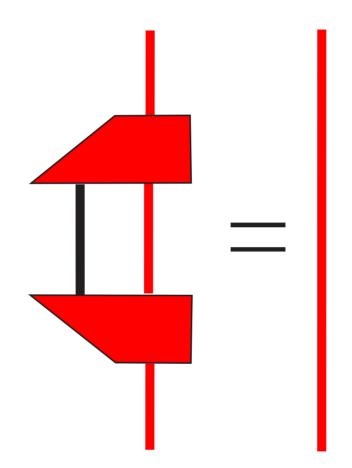
Asserts *no-faster-than-light* communication

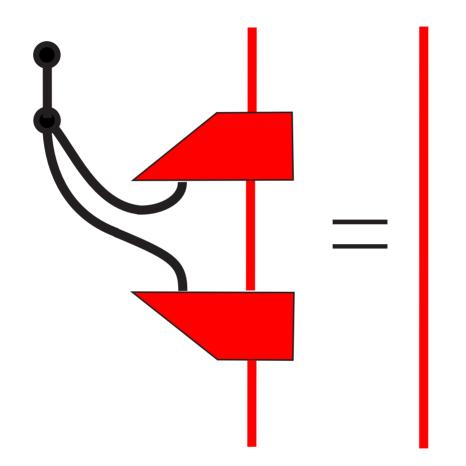


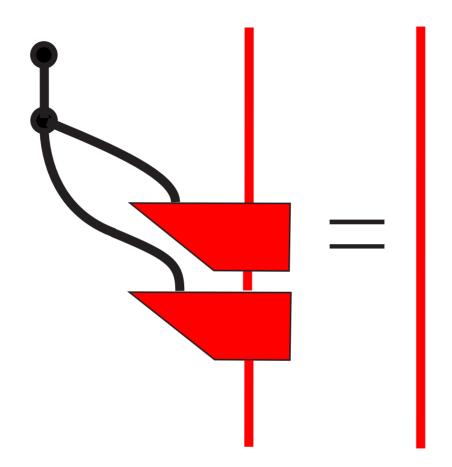


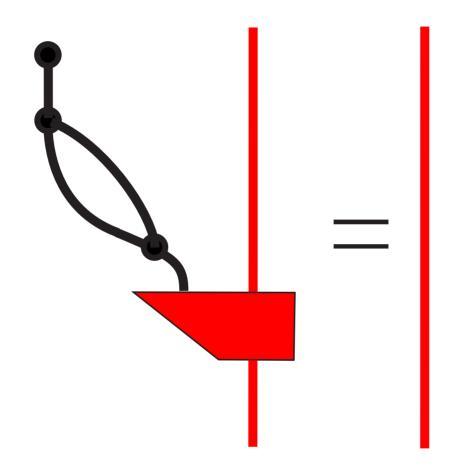


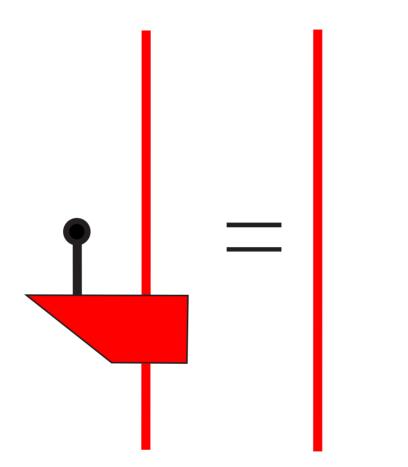


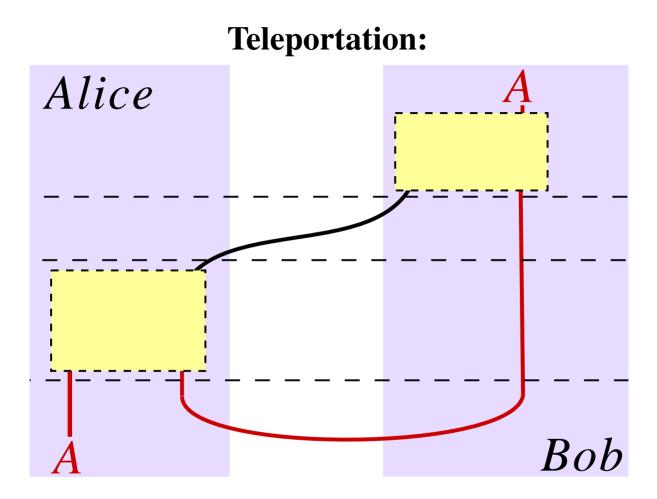


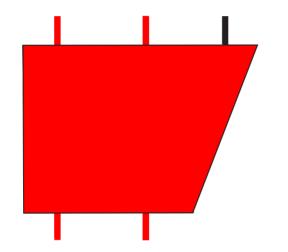


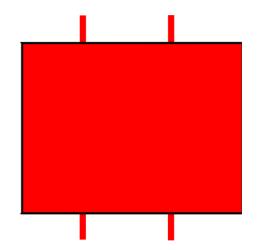


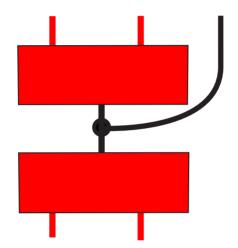


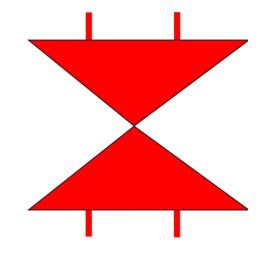


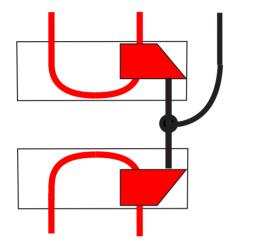


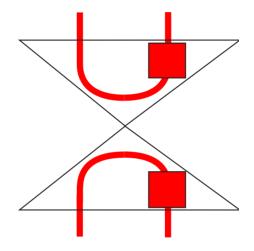


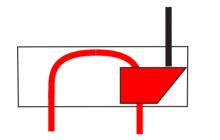


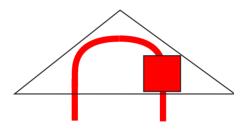




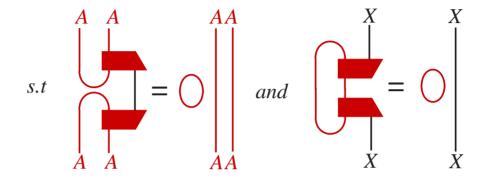


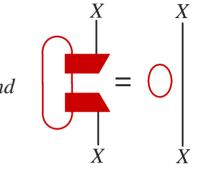


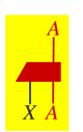


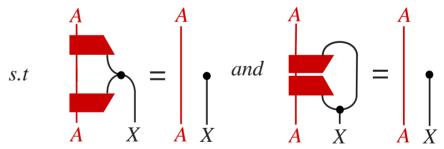


Teleportation enabling measurement:

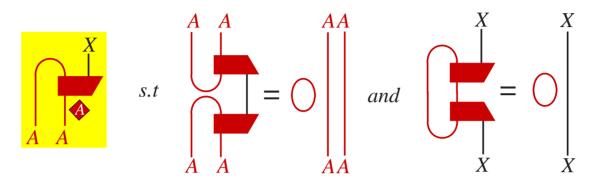




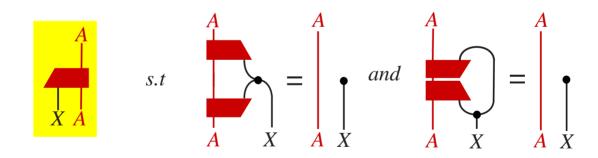




Teleportation enabling measurement:

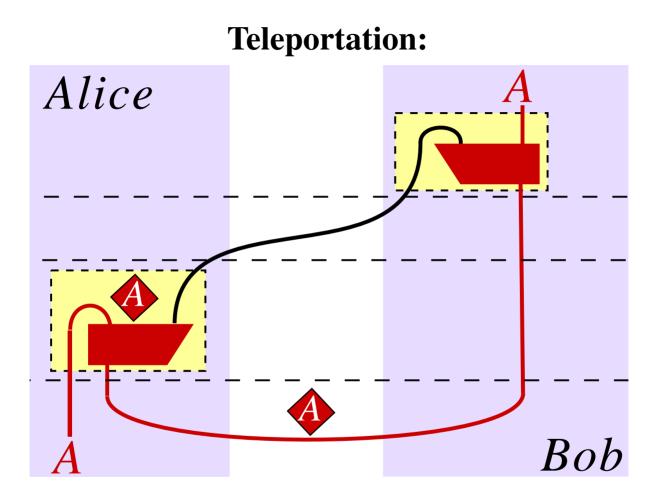


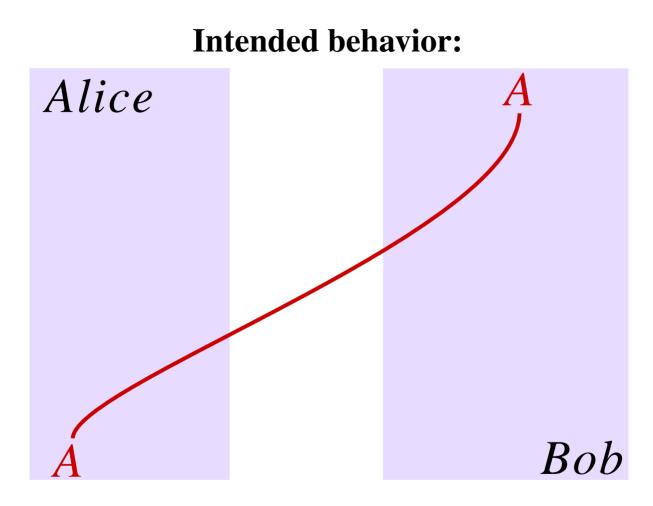
abstracts $\dim(X) \ge (\dim(A))^2$ and $\operatorname{Tr}(U_x \circ U_y^{\dagger}) = \delta_{xy}$.



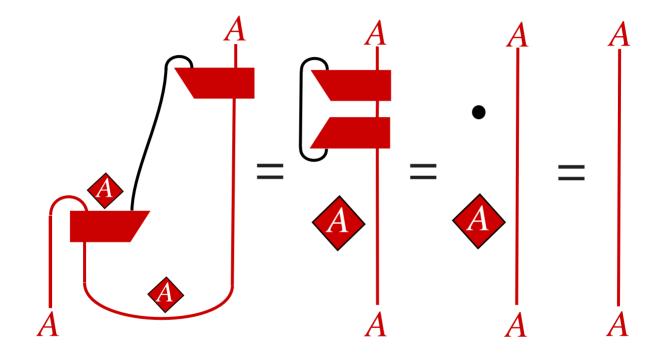
abstracts unitarity of $\{U_x\}_x$ i.e. $U_x^{\dagger} \circ U_x = U_x \circ U_x^{\dagger} =$

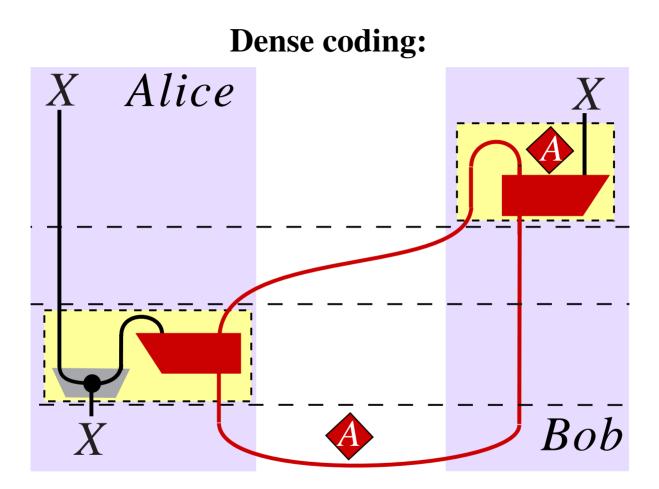
 $1_{A\bullet}$

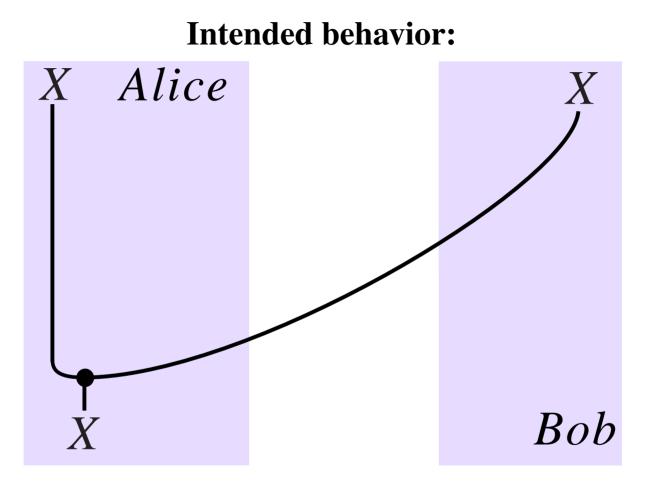




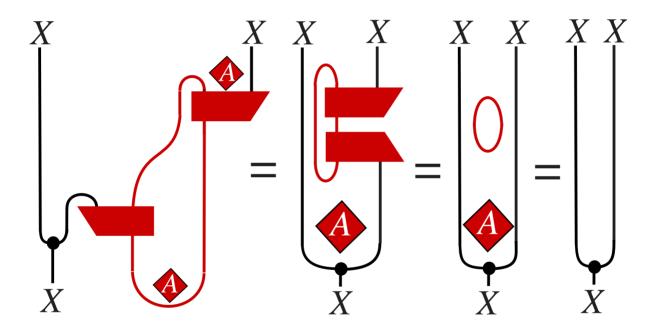
Proof:







Proof:



Other things we can do:

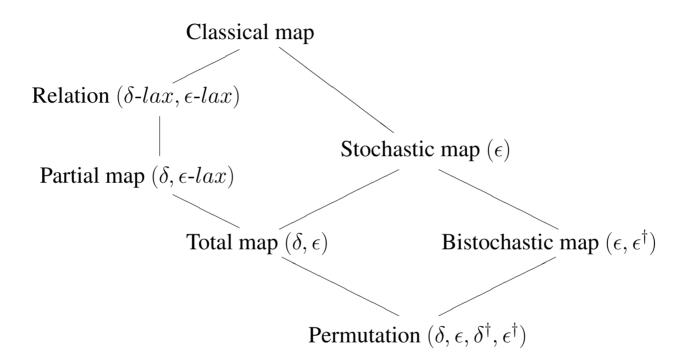
- proof correctness, generalize and find required structural resources of measurement based schemes's.
- CPMs, POVMs and Naimark's extension theorem
- resource inequalities e.g. coherent communication

Ross Duncan's talk:¹

- computing with basic quantum gates
- prove universality of one-way computing
- compute the quantum Fourier transform

¹EXPOSES THE COMPUTATIONAL POWER OF MULTIPLE CLASSI-CAL CONTEXTS i.e. WE CAN USE CLASSICAL STRUCTURE NOT ONLY FOR CONTROL BUT ALSO FOR "RAW" QUANTUM CALCULUS

Classical species:



Classical maps are broadcast-able maps

