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What is Q Simulation?

Employing a computational machine to mimic cer-
tain physical q systems thereby answering relevant
c–intractable questions accurately and efficiently.

Accuracy: bounded error ε.

Efficiency: cost (e.g., time and space) of simulation scales

‘reasonably’ (polynomially) with the problem size.
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An aim of q sim: simulating Schrödinger’s Equation

Schrödinger’s equation:

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉.

Unitary dynamics (~ ≡ 1):

Ĥ = Ĥ† =⇒ |ψ(t)〉 = T exp
{
−i
∫ t

0 duĤ(u)
}
|ψ(0)〉.

Time-independent: |ψ(t)〉 = exp
{
−iĤt

}
|ψ(0)〉

Different solutions with different complexity:

solve |ψ(t)〉 over some time domain;

determine the spectrum of Ĥ;

find eigenvectors of Ĥ, e.g. the ground state;

estimate the mean of an observable 〈ψ(t)|Ô|ψ(t)〉.

Some quantities could be tractable whereas others not so.
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Some C methods for simulating Schrödinger’s Equation

Diagonalize Ĥ; then algebräıc.

Integrate:

Runge-Kutta;

Magnus expansions = Baker-Campbell-Hausdorff method;

Product formulæ:

Forest-Ruth = symplectic integration;

Trotter-Suzuki;

. . . .

Quantum Monte Carlo simulations:

Stochastic Green functions;

Variational, diffusion or path-integral Monte-Carlo methods.

Density matrix renormalization group.

Wiebe Berry Høyer BCS J. Phys. A 43 065203 (2010).
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Feynman: Simulating Physics with Computers

§5. Can q systems be probabilistically simulated by a c computer?

Can a q system be probabilistically simulated by a c (probabilistic,

I’d assume) universal computer? In other words, a computer which

will give the same probabilities as the q system does. If you take

the computer to be the c kind I’ve described so far, (not the q

kind described in the last section) and there’re no changes in any

laws, and there’s no hocus-pocus, the answer is certainly, No! This

is called the hidden-variable problem: it is impossible to represent

the results of q mechanics with a c universal device.

Feynman Int. J. Th. Phys. 21 (1982) pp. 467–488.
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Decision problems & complexity (Aaronson’s schematic)

How hard to solve Yes/No problem.

Employ algorithm (input, output,
procedure using instruction set).

Instance size: n bits for input.

Complexity: resource scaling (T &
S) vs n.

PSPACE ⊂ EXP.

PP: Y =⇒ output Y w/pr≥ 1/2;
N =⇒ output Y w/pr≤ 1/2.

BPP: Y =⇒ output Y w/pr≥ 2/3;
N =⇒ output Y w/pr≤ 1/3.
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Feynman exegesis

Heisenberg picture (matrices) =⇒ q problems ⊂ EXP.

Feynman path integral =⇒ q problems ⊂ PP.1

“give the same probabilities” =⇒ q algorithm efficiently
answers decision problems concerning expectation values
〈ψ|Ô|ψ〉 with bounded error.

“classical kind . . . the answer is certainly, No!” =⇒ some of
these problems 6⊂ BPP.2

P=BPP generally believed.
Implication BPP⊂BQP would be significant if proved.
Feynman says ”No!” because of “the hidden-variable problem:
it is impossible to represent the results of quantum mechanics
with a classical universal device”. Correct?

Aside: post-selected quantum computing is PostBQP=PP.
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Approximate simulation of (known) Ĥ-generated evolution

Simulating within tolerance ε.

Treat case of time-independent Ĥ(n);

Resultant evolution over time t: U = exp
{
−iĤ(n)t

}
;

Evolution: |ψ(t)〉 = exp
{
−iĤt

}
|ψ(0)〉;

Simulated state |ψ̃(t)〉 has error: ‖ |ψ̃(t)〉 − |ψ(t)〉 ‖;
Input: ε = upper bound to allowed worst-case error.

Raeisi Wiebe BCS New J. Phys. 14 103017 (2012).
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Decomposing an n-qubit k-local Ĥ (n)

Write the Hamiltonian as a sum of simpler Hamiltonians

Express evolution as sequence of evolutions generated by
simpler Hamiltonians;

Let ĥ
(n)
j = ⊗n

`=1Ξ̂
(n)
j` act on k ∈ polylog(n) qubits;

Each Ξ̂
(n)
j` drawn from{

1,X =

(
0 1
1 0

)
,Y = i

(
0 −1
−1 0

)
,Z =

(
1 0
0 −1

)}
& is non-1 for ≤ k instances in tensor product;

k-local Ĥ(n):
∑m∈poly(n)

j=1 ĥ
(n)
j .

Raeisi Wiebe BCS New J. Phys. 14 103017 (1982).
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Quantum circuit component for Pauli evolution

Unitary evolution generated by hj

Uj = exp
{
−ih

(n)
j t
}

exp {−iφX ⊗ Y ⊗ 1⊗ Z}
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Sequence of Ĥ-generated evolutions

Generating and multiplying evolution operators.

Partition time interval ∆t = t/r , namely (t1, . . . , tM);

U(∆t) ≈ exp
{
−iajMh

(n)
jM

tM

}
· · · exp

{
−iaj1h

(n)
j1

t1

}
.

General case: time-ordered exponential

T exp
{
−i
∫ t+∆t
t du

∑m
j=1 Ĥj(u)

}
≈
∏M

q=1 exp
(
−iĤjq(tq)∆tq

)
.

Trotter product formula

eit(ĥ+ĥ′) → limn→∞

(
eitĥ/neitĥ′/n

)n
. Error ε is important.

Raeisi Wiebe BCS New J. Phys. 14 103017 (1982).
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Minimizing time cost using Suzuki’s iterative algorithm

Suzuki’s generalization of the Trotter formula

S2(λ) =
m∏
j=1

eĤjλ/2
1∏

j ′=m

eĤj′λ/2,

S2k(λ) = [S2k−2(pkλ)]2 S2k−2 ((1− 4pk)λ) [S2k−2(pkλ)]2 ,

for pk =
(
4− 41/(2k−1)

)−1
. Each iteration k has 5× as many

terms as for iteration k − 1.

Suzuki proves for small λ:∥∥∥exp
{∑m

j=1 Ĥjλ
}
− S2k−1(λ)

∥∥∥ ∈ O
(
|λ|2k+1

)
.

Suzuki Phys. Lett. A 146 319 (1990),

Suzuki J. Math. Phys. 32 400 (1991).
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Hamiltonian in a black-box

Previously designed algorithm exploits knowledge of Ĥ(n);

Black-box setting: algorithm without knowledge of Ĥ(n);

Ĥ(n) is queried during algorithm;

Ĥ(n) is exponentially large in n;

Require simplifying promises for Ĥ(n) to reduce cost;

Objective is to construct an efficient algorithm for any
Hamiltonian subject to reasonable promises.

Lloyd’s 1996 formalization of efficient q computing

Assumed tensor-product structure and used

exp

−it
m∑
j=1

Ĥj

 =

(
N∏
i=1

exp
{
−i

t

r
Ĥji

})r

+
∑
j>j ′

[
Ĥj , Ĥj ′

] t2

2r
+ ε

to prove polyn time T and space S costs.
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Simulating evolution for one-sparse Ĥ (n)

Simulating evolution for diagonal Ĥ with d(a) = 〈a|Ĥ|a〉 ∈ {0, 1}k .

|a, 0〉 7→ |a, d(a)〉 7→ exp{−itd(a)}|a, d(a)〉 7→ exp{−itd(a)}|a, 0〉.
Circuit for one-sparse Hamiltonian evolution is a minor
modification of diagonal-Ĥ(n) circuit.

Childs Cleve Deotto Farhi Gutmann Spielman STOC’03 146 59–68.
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Simulating evolution for one-sparse Ĥ

General evolution as sequence of one-sparse Hamiltonian evolutions

Approximately & efficiently decompose the overall evolution
U ≈

∏N
ν=1 Ujν each generated by one-sparse Ĥji .

U = UjN
 Uj2

Uj1 ψ = cl l∑
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Q state generation [Aharonov & Ta-Shma (AT) 2003]

Motivated by claims of adiabatic q computing solving
NP-Hard problems (still relevant today3).

Consider which q states can be efficiently generated.

Oracle setting: efficiently queries elements of Ĥ.

No assumption of tensor-product structure (c.f. Lloyd).

Demonstrate equivalence between QSG and statistical zero
knowledge (SZK) problems.

ZK proof: prove knowledge of secret without revealing secret.
SZK problems: discrete log, quadratic residuosity, . . . .
Specifically show SZK problems reducible to QSG problems.
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Considerations for efficient quantum simulation

Problem size: Number n of qubits in the system.
Accuracy: The answer is no worse than ε (appropriate metric).
Efficient: Solve with resource consumption ∈ O

(
polyn

ε

)
.

Generality: Solves problems for a broad class of systems.

Sparse Hamiltonian Lemma (Aharonov & Ta-Shma STOC 2003)

If Ĥ acting on n qubits is d-sparse s.t. d ∈ O(polyn) & the list of
nonzero entries in each row is efficiently computable, then Ĥ is
simulatable if ‖Ĥ‖ ≤ polyn.

Childs’s rules for simulatability∑
i Ĥi with each Ĥi acting on O(1) qubits or

is a
√
−1× commutator of two simulatable Ĥi s or

convertible to simulatable Ĥ by efficient unitary conjugation or

is sparse and efficiently computable

Barry C. Sanders Algorithmic Quantum Simulation
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Aharonov & Ta-Shma Circuit (Wiebe’s picture)
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Simulation cost is slightly superlinear in time t1+o(1)

Theorem [Berry, Ahokas, Cleve, Sanders 2007 (BACS)]

M ≤ m52k(mqkτ)1+1/2k

2 [(2k + 1)!ε]1/2k

Optimize

k ≈ 1

2

√
log5

(mτ
ε

)
.

M ≤ 2m2τ exp

{
2

√
log5

(mτ
ε

)}
≈ 1

2

√
log5/

√
3

(mτ
ε

)
(1)
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Black-box q simulation must be superlinear in time

Theorem (No Quantum Speedup)

For all positive integers N ∃ a row-computable two-sparse Ĥ s.t.
simulating Ĥ-generated evolution for (scaled) time τ = πN/2
within precision 1/4 requires ≥ τ/2π queries to Ĥ.

π/2	


t=0 

π	


π/4	


3π/4	


Xj =      0         1          1          0          1          0          0          1 
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Hamiltonians as weighted graphs (Cleve’s picture)

For column x , only rows y1,...,d hold nonzero matrix elements.

The graph weight αi is 〈x |Ĥ|yi 〉.
As Ĥ = Ĥ†, α∗i is the weight for column yi and row x .

Hermitian Ĥ can be represented by a degree d graph.
Goal: decompose Ĥ graph into disjoint union of d = 1 graphs.

y1 

yd 

x : 
α1 

αd 
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Colouring the graph for Ĥ with d2 labels (Cleve’s picture)
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Problem: long monochromatic paths (Cleve’s picture)
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Colouring by Cole-Vishkin coin tossing [Cleve picture]

x 
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w 

(a,b,     x 

(a,b,     y 

(a,b,     z 

(a,b,     w 

n 
bits 

x 
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w 

x′ 

y′ 
 

z′ 

w′ 

d 
2 2n 

colours 
log(n)+1 
bits 

y′ ß (i, yi), where i = min{ j : yj ≠ zj} 

Then   y′ = (010,1) 

Example:  y = 01100101 
z = 01001101 

010 

x < y < z < w 

Note: still a valid coloring! 
x′ ≠ y′  &  y′ ≠ z′  &  z′ ≠ w′ 

“Deterministic coin-
tossing” [Cole & Vishkin ’86] 
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Colouring by Cole-Vishkin coin tossing [Cleve picture]

Breaking up the paths II 
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Time and space costs for simulating Ĥ-generated evolution

Who Year T S

Lloyd 1996 O(t2) O(n)

AT4 2003 O
(
n9d4 t2

ε

)
O(n)

Childs5 2003 O
(
n2d4+o(1) t3/2

√
ε

)
O (n)

BACS6 2007 O
(

log∗nd4+o(1) t1+1/2k

ε1/2k

)
O(n log∗n)

CK7 2010 O
([

d3 + d2 log∗n
]
t1+1/2k

ε1/2k

)
O (nd + n log∗n)

BC8 2010 O
(
‖Ĥ‖maxd

t√
ε

)
•
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Simulating many-body systems

Abrams & Lloyd PRL 1996

But the problem of simulation — that is, the problem of modeling
the full time evolution of an arbitrary q system — is less
technologically demanding. While thousands of qubits and billions
of q logic operations are needed to solve c difficult factoring
problems [16], it would be possible to use a q computer with only
a few tens of qubits and a few thousand operations to perform
simulations that would be c intractable [17].

ĤHubbard =− t
∑
〈i ,j〉,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ U

N∑
i=1

n̂i↑n̂i↓,

ĤBose-Hubbard =− t
∑
〈i ,j〉

(
ĉ†iσ ĉj + ĉ†j ĉi

)
+

U

2

N∑
i=1

n̂i (n̂i − 1)− µ
N∑
i=1

n̂i .
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Examples: models for simulation

ĤIsing = J
∑
〈i ,j〉 Zi ⊗ Zj + B

∑
i Xi .

ĤXY = Jx
∑
〈i ,j〉 Xi ⊗ Xj + Jy

∑
〈i ,j〉 Yi ⊗ Yj .

ĤHeisenberg = Jx
∑
〈i ,j〉 Xi ⊗ Xj + Jy

∑
〈i ,j〉 Yi ⊗ Yj

Ĥhoneycomb =
−Jx

∑
x-link Xi ⊗ Xj − Jy

∑
y -link Yi ⊗ Yj − Jz

∑
x-link Zi ⊗ Zj

Barry C. Sanders Algorithmic Quantum Simulation
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Time-dependent Hamiltonian evolution

Problem:

For Ĥ =
∑m

j=1 Ĥj with each Hamiltonian Ĥj : R→ CN×N

P-differentiable, construct

U(t, t + ∆T ) := T exp

{
−i

∫ t+∆t

t
duĤ(u)

}
as a product of N exponentials exp

{
−iĤjP (tP)∆tP

}
within

tolerance ε of U(t, t + ∆t), and find an upper bound for N.

Barry C. Sanders Algorithmic Quantum Simulation
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Conditions for Ĥ(t) to be efficiently q–simulatable

Theorem: Wiebe, Berry, Høyer, Sanders 2010

Let Ĥ(t) =
∑m

j=1 Ĥj(t) with each Ĥj(t) 2k-differentiable on
[µ, µ+ ∆λ]. Furthermore let timescale Λ satisfy

Λ = sup
λ∈[µ,µ+∆λ]

max
q=0,...,2k, j=1,...,m

∥∥∥∂qλĤj(t)
∥∥∥1/(q+1)

with

ε ≤ 9

10

(
5

3

)k

Λ∆λ

and maxx>y ‖U(x , y)‖ ≤ 1, then a decomposition Ũ(µ+ ∆λ, µ)
can be constructed s.t. ‖Ũ − U‖ ≤ ε and s.t. the number of
operator exponentials in Ũ satisfies

M ≤

⌈
3mΛ∆λk

(
25

3

)k (Λ∆λ

ε

)1/2k
⌉
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Q linear equation solver [Harrow Hassidim, Lloyd 2009]

Typical problem statement

Given matrix A and vector b, find x such that Ax = b; or given
matrix A, vector b, and matrix M, find a good approximation
of xTMx such that x such that Ax = b.

Replace b by |b〉 =
∑N

i=1 bi |i〉 in computational basis.

Then |x〉 = ĥ−1|b〉, but inverting ĥ is hard.

ĥ has eigenvalues λj and eigenvectors |uj〉 for j = 1, . . . ,N.

Express |b〉 =
∑N

j=1 βj |uj〉.

Idea: |x〉 = ĥ−1|b〉 ≈
∑N

j=1
βj
λj
|uj〉.

Kitaev phase-estimation approach:
∑N

j=1 βj |uj〉|λj〉.
Construct (non-unitary) linear map |λj〉 7→ λ−1

j |λj〉.
Uncompute |λj〉 to obtain approximate |x〉.
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Summary

Devised and costed efficient, accurate algorithms for Q
simulation for Ĥ held by an oracle.

For oracle setting, an efficient query technique is developed to
construct the Q simulation as a concatenation of Q circuits
for one-sparse Ĥ simulation.

Run-time for Q algorithm is reduced by exploiting
higher-order Suzuki method.

Applications to many-body q simulation.

Q algorithms have been developed for time-dependent Ĥ,
which is relevant to adiabatic Q computing, controlled
systems and Q phase transitions.

Q could be used as a linear equation solver.

Barry C. Sanders Algorithmic Quantum Simulation
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