Algorithmic Quantum Simulation

Barry C. Sanders

9 Sep 2014

イロン イ何ン イヨン イヨン

つへへ

Table of Contents

[Introduction](#page-2-0)

² Q [simulation circuitry](#page-8-0) [Many-body simulation](#page-28-0) [Time-dependent Hamiltonian](#page-30-0) 5 [Solving linear equations](#page-32-0) **[Summary](#page-33-0)**

(ロ) (母) (ヨ

つくい

What is Q Simulation?

Employing a computational machine to mimic certain physical Q systems thereby answering relevant c–intractable questions accurately and efficiently.

- Accuracy: bounded error ϵ .
- Efficiency: cost (e.g., time and space) of simulation scales 'reasonably' (polynomially) with the problem size.

医单侧 医单侧

つくい

 $\left\langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\rangle$

[Introduction](#page-2-0) Q [simulation circuitry](#page-8-0) [Many-body simulation](#page-28-0) Tin

An aim of Q sim: simulating Schrödinger's Equation

• Schrödinger's equation:

$$
i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle=\hat{H}(t)|\psi(t)\rangle.
$$

- \bullet Unitary dynamics ($\hbar \equiv 1$): $\hat{H} = \hat{H}^{\dagger} \implies |\psi(t) \rangle = \mathcal{T} \exp \left\{ - \mathrm{i} \int_0^t \mathsf{d} u \hat{H}(u) \right\} |\psi(0) \rangle.$
- Time-independent: $|\psi(t)\rangle = \exp\left\{-\mathrm{i}\hat{H}t\right\}|\psi(0)\rangle$
- Different solutions with different complexity:
	- solve $|\psi(t)\rangle$ over some time domain;
	- determine the spectrum of \hat{H} ;
	- find eigenvectors of \hat{H} , e.g. the ground state;
	- e estimate the mean of an observable $\langle \psi(t)|\hat{O}|\psi(t)\rangle$.
- Some quantities could be tractable whe[rea](#page-2-0)[s](#page-1-0) [o](#page-2-0)[th](#page-3-0)[er](#page-4-0)s[n](#page-7-0)[o](#page-7-0)[t](#page-1-0) [s](#page-2-0)o[.](#page-8-0)
وی د کار -10.16

 Ω

Some C methods for simulating Schrödinger's Equation

- \bullet Diagonalize \hat{H} ; then algebraïc.
- Integrate:
	- Runge-Kutta;
	- \bullet Magnus expansions $=$ Baker-Campbell-Hausdorff method;
	- Product formulæ:
		- Forest-Ruth $=$ symplectic integration;
		- **Trotter-Suzuki:**
		- \bullet
- Quantum Monte Carlo simulations:
	- Stochastic Green functions:
	- Variational, diffusion or path-integral Monte-Carlo methods.
- Density matrix renormalization group.

Wiebe Berry Høyer BCS J. Phys. A 43 065203 (2010).

YO A RELATE YOUR

Feynman: Simulating Physics with Computers

$§5.$ Can Q systems be probabilistically simulated by a C computer?

Can a Q system be probabilistically simulated by a C (probabilistic, I'd assume) universal computer? In other words, a computer which will give the same probabilities as the Q system does. If you take the computer to be the C kind I've described so far, (not the Q kind described in the last section) and there're no changes in any laws, and there's no hocus-pocus, the answer is certainly, No! This is called the hidden-variable problem: it is impossible to represent the results of Q mechanics with a C universal device.

Feynman Int. J. Th. Phys. 21 (1982) pp. 467–488.

イロメ イ押メ イヨメ イヨメー

Decision problems & complexity (Aaronson's schematic)

- How hard to solve Yes/No problem.
- Employ algorithm (input, output, procedure using instruction set).
- \bullet Instance size: *n* bits for input.
- Complexity: resource scaling (T & S) vs n .
- PSPACE ⊂ EXP.
- PP: $Y \implies$ output Y w/pr $\geq 1/2$; $N \implies$ output Y w/pr < 1/2.
- BPP: $Y \implies$ output Y w/pr $\geq 2/3$; $N \implies$ output Y w/pr < 1/3.

Feynman exegesis

- \bullet Heisenberg picture (matrices) \implies q problems \subset EXP.
- Feynman path integral \implies q problems \subset PP.¹
- "give the same probabilities" \implies q algorithm efficiently answers decision problems concerning expectation values $\langle \psi | \hat{\mathcal{O}} | \psi \rangle$ with bounded error.
- "classical kind . . . the answer is certainly, No !" \implies some of these problems $\not\subset$ BPP.²
	- \bullet P=BPP generally believed.
	- Implication BPP⊂BQP would be significant if proved.
	- Feynman says "No!" because of "the hidden-variable problem: it is impossible to represent the results of quantum mechanics with a classical universal device". Correct?
- Aside: post-selected quantum computing is $PostBQP=PP$.

 $(1 - \epsilon)$ and $(1 - \epsilon)$ and $(1 - \epsilon)$

Approximate simulation of (known) H -generated evolution

Simulating within tolerance ϵ .

- Treat case of time-independent $\hat{H}^{(n)}$;
- Resultant evolution over time $t\colon\ U=\exp\left\{-\text{i}\hat{H}^{(n)}t\right\};$
- Evolution: $|\psi(t)\rangle = \exp\left\{-\mathrm{i}\hat{H}t\right\} |\psi(0)\rangle;$
- Simulated state $|\tilde{\psi}(t)\rangle$ has error: $\|\ket{\tilde{\psi}(t)} \ket{\psi(t)}\|;$
- Input: $\epsilon =$ upper bound to allowed worst-case error.

Raeisi Wiebe BCS New J. Phys. 14 103017 (2012).

イロメ イ母メ イヨメ イヨメー

Decomposing an *n*-qubit *k*-local $\hat{H}^{(n)}$

Write the Hamiltonian as a sum of simpler Hamiltonians

Express evolution as sequence of evolutions generated by simpler Hamiltonians;

• Let
$$
\hat{\mathfrak{h}}_j^{(n)} = \otimes_{\ell=1}^n \hat{\Xi}_{j\ell}^{(n)}
$$
 act on $k \in \text{polylog}(n)$ qubits;

• Each
$$
\hat{\Xi}_{j\ell}^{(n)}
$$
 drawn from
\n
$$
\left\{1, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = i \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right\}
$$
\n& is non-1 for $\leq k$ instances in tensor product;

• *k*-local
$$
\hat{H}^{(n)}
$$
: $\sum_{j=1}^{m \in \text{poly}(n)} \hat{\mathfrak{h}}_j^{(n)}$.

Raeisi Wiebe BCS New J. Phys. 14 103017 (1982).

→ イ母 ト イヨ ト イヨ ト

つくい

Quantum circuit component for Pauli evolution

Unitary evolution generated by \mathfrak{h}_i

$$
U_j = \exp\left\{-\mathrm{i}\mathfrak{h}_j^{(n)}t\right\}
$$

 $\exp \{-i\phi X \otimes Y \otimes 1 \otimes Z\}$

イロメ イ押メ イヨメ イヨメー

Sequence of \hat{H} -generated evolutions

Generating and multiplying evolution operators.

• Partition time interval $\Delta t = t/r$, namely (t_1, \ldots, t_M) ;

•
$$
U(\Delta t) \approx \exp \left\{-i a_{j_M} \mathfrak{h}_{j_M}^{(n)} t_M \right\} \cdots \exp \left\{-i a_{j_1} \mathfrak{h}_{j_1}^{(n)} t_1 \right\}.
$$

General case: time-ordered exponential

$$
\mathcal{T}\exp\left\{-i\int_t^{t+\Delta t} du \sum_{j=1}^m \hat{H}_j(u)\right\} \approx \prod_{q=1}^M \exp\left(-i\hat{H}_{j_q}(t_q)\Delta t_q\right).
$$

Trotter product formula

$$
e^{it(\hat{i}_j+\hat{i}_j')} \rightarrow \text{lim}_{n \to \infty} \left(e^{it\hat{i}_j/n}e^{it\hat{i}_j'/n}\right)^n. \text{ Error } \epsilon \text{ is important.}
$$

Raeisi Wiebe BCS New J. Phys. 14 103017 (1982).

つくい

Minimizing time cost using Suzuki's iterative algorithm

Suzuki's generalization of the Trotter formula

$$
S_2(\lambda) = \prod_{j=1}^m e^{\hat{H}_j \lambda/2} \prod_{j'=m}^1 e^{\hat{H}_{j'} \lambda/2},
$$

\n
$$
S_{2k}(\lambda) = [S_{2k-2}(p_k \lambda)]^2 S_{2k-2} ((1 - 4p_k) \lambda) [S_{2k-2}(p_k \lambda)]^2,
$$

for $p_k = \left(4-4^{1/(2k-1)}\right)^{-1}$. Each iteration k has 5 \times as many terms as for iteration $k - 1$.

Suzuki proves for small λ :

$$
\left\|\exp\left\{\sum_{j=1}^m\hat{H}_j\lambda\right\}-S_{2k-1}(\lambda)\right\|\in O\left(|\lambda|^{2k+1}\right).
$$

Suzuki Phys. Lett. A 146 319 (1990), Suzuki J. Math. Phys. 32 400 [\(1](#page-11-0)9[91](#page-13-0)[\)](#page-11-0)[.](#page-12-0)

 \rightarrow \rightarrow \sim

 $-$

Hamiltonian in a black-box

- Previously designed algorithm exploits knowledge of $\hat{H}^{(n)}$;
- Black-box setting: algorithm without knowledge of $\hat{H}^{(n)}$;
- $\hat{H}^{(n)}$ is queried during algorithm;
- $\hat{H}^{\left(n\right) }$ is exponentially large in $n;$
- Require simplifying promises for $\hat{H}^{(n)}$ to reduce cost;
- Objective is to construct an efficient algorithm for any Hamiltonian subject to reasonable promises.

Lloyd's 1996 formalization of efficient Q computing

Assumed tensor-product structure and used

$$
\exp\left\{-\mathrm{i}t\sum_{j=1}^m\hat{H}_j\right\} = \left(\prod_{i=1}^N\exp\left\{-\mathrm{i}\frac{t}{r}\hat{H}_{j_i}\right\}\right)^r + \sum_{j>j'}\left[\hat{H}_j,\hat{H}_{j'}\right]\frac{t^2}{2r} + \epsilon
$$

to prove polyn time T and space S costs.

Simulating evolution for one-sparse $\hat{H}^{(n)}$

Childs Cleve Deotto Farhi Gutmann Spielman STOC'03 146 59–68.

Barry C. Sanders [Algorithmic Quantum Simulation](#page-0-0)

Simulating evolution for one-sparse H

General evolution as sequence of one-sparse Hamiltonian evolutions

Approximately & efficiently decompose the overall evolution $U \approx \prod_{\nu=1}^N U_{j_\nu}$ each generated by one-sparse $\hat H_{j_i}$.

Barry C. Sanders

[Algorithmic Quantum Simulation](#page-0-0)

つくい

Q state generation [Aharonov & Ta-Shma (AT) 2003]

- Motivated by claims of adiabatic Q computing solving NP -Hard problems (still relevant today³).
- Consider which Q states can be efficiently generated.
- \bullet Oracle setting: efficiently queries elements of \hat{H} .
- No assumption of tensor-product structure (c.f. Lloyd).
- Demonstrate equivalence between QSG and statistical zero knowledge (SZK) problems.
	- ZK proof: prove knowledge of secret without revealing secret.
	- SZK problems: discrete log, quadratic residuosity,
	- Specifically show SZK problems reducible to QSG problems.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right\} & \rightarrow & \left\{ \begin{array}{ccc} \Xi & \rightarrow & \leftarrow \end{array} \right. \end{array} \right.$

 Ω

Considerations for efficient quantum simulation

- Problem size: Number n of qubits in the system.
- Accuracy: The answer is no worse than ϵ (appropriate metric).
- Efficient: Solve with resource consumption $\in O(\text{poly}_{\epsilon}^n)$.
- Generality: Solves problems for a broad class of systems.

Sparse Hamiltonian Lemma (Aharonov & Ta-Shma STOC 2003)

If \hat{H} acting on *n* qubits is *d*-sparse s.t. $d \in O(polyn)$ & the list of nonzero entries in each row is efficiently computable, then \hat{H} is simulatable if $\|\hat{H}\|$ < polyn.

Childs's rules for simulatability

- $\sum_i \hat H_i$ with each $\hat H_i$ acting on $O(1)$ qubits or
- $\sum_{i=1}^{n}$ is a $\sqrt{-1} \times$ commutator of two simulatable \hat{H}_i s or
- convertible to simulatable \hat{H} by efficient unitary conjugation or
- • is sparse and efficiently computable

Aharonov & Ta-Shma Circuit (Wiebe's picture)

K □ ▶ K 何 ▶ K 后 ▶ K 后

つくへ

 \sim

Simulation cost is slightly superlinear in time $t^{1+o(1)}$

Theorem [Berry, Ahokas, Cleve, Sanders 2007 (BACS)]

$$
M \leq \frac{m5^{2k} (mq_k \tau)^{1+1/2k}}{2 [(2k+1)! \epsilon]^{1/2k}}
$$

Optimize

$$
k \approx \frac{1}{2} \sqrt{\log_5 \left(\frac{m\tau}{\epsilon}\right)}.
$$

$$
M \leq 2m^2 \tau \exp\left\{2\sqrt{\log_5\left(\frac{m\tau}{\epsilon}\right)}\right\} \approx \frac{1}{2}\sqrt{\log_{5/\sqrt{3}}\left(\frac{m\tau}{\epsilon}\right)}\qquad(1)
$$

 $\left\{ \begin{array}{ccc} \square & \times & \overline{\square} & \times \end{array} \right.$ $\left\{ \begin{array}{ccc} \square & \times & \times & \overline{\square} & \times \end{array} \right.$

Black-box q simulation must be superlinear in time

Theorem (No Quantum Speedup)

For all positive integers $N \exists$ a row-computable two-sparse \hat{H} s.t. simulating \hat{H} -generated evolution for (scaled) time $\tau = \pi N/2$ within precision 1/4 requires $\geq \tau/2\pi$ queries to \hat{H} .

Barry C. Sanders [Algorithmic Quantum Simulation](#page-0-0)

Þ

 QQ

Hamiltonians as weighted graphs (Cleve's picture)

- For column x, only rows $y_{1,\dots,d}$ hold nonzero matrix elements.
- The graph weight α_i is $\langle x|\hat{H}|y_i\rangle$.
- As $\hat{H} = \hat{H}^{\dagger}$, α^*_{i} is the weight for column y_{i} and row x .
- \bullet Hermitian \hat{H} can be represented by a degree d graph.
- Goal: decompose \hat{H} graph into disjoint union of $d = 1$ graphs.

 Ω

[Introduction](#page-2-0) Q [simulation circuitry](#page-8-0) [Many-body simulation](#page-28-0) Tin

Colouring the graph for \hat{H} with d^2 labels (Cleve's picture)

Problem: long monochromatic paths (Cleve's picture)

Colouring by Cole-Vishkin coin tossing [Cleve picture]

"Deterministic cointossing" [Cole & Vishkin '86]

$$
y' \leftarrow (i, y_i), \text{ where } i = \min\{j : y_j \neq z_j\}
$$

\nExample:
$$
y = 01100101
$$

\n
$$
z = 01001101
$$

\nThen
$$
y' = (010, 1)
$$

\nNote: still a valid coloring!
\n
$$
x' \neq y' \& y' \neq z' \& z' \neq w'
$$

Colouring by Cole-Vishkin coin tossing [Cleve picture]

つくへ

Time and space costs for simulating \hat{H} -generated evolution

Barry C. Sanders [Algorithmic Quantum Simulation](#page-0-0)

イロメ イ押メ イヨメ イヨメー

 QQ

Simulating many-body systems

Abrams & Lloyd PRL 1996

But the problem of simulation — that is, the problem of modeling the full time evolution of an arbitrary Q system $-$ is less technologically demanding. While thousands of qubits and billions of Q logic operations are needed to solve C difficult factoring problems $[16]$, it would be possible to use a Q computer with only a few tens of qubits and a few thousand operations to perform simulations that would be σ intractable [17].

$$
\hat{H}_{\mathsf{Hubbard}} = - \; t \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \hat{c}^{\dagger}_{j\sigma} \hat{c}_{i\sigma} \right) + U \sum_{i=1}^{N} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow},
$$
\n
$$
\hat{H}_{\mathsf{Bose-Hubbard}} = - \; t \sum_{\langle i,j \rangle} \left(\hat{c}^{\dagger}_{i\sigma} \hat{c}_{j} + \hat{c}^{\dagger}_{j} \hat{c}_{i} \right) + \frac{U}{2} \sum_{i=1}^{N} \hat{n}_{i} \left(\hat{n}_{i} - \mathbb{1} \right) - \mu \sum_{i=1}^{N} \hat{n}_{i}.
$$

 $\ddot{}$

Examples: models for simulation

\n- \n
$$
\hat{H}_{\text{Ising}} = J \sum_{\langle i,j \rangle} Z_i \otimes Z_j + B \sum_i X_i.
$$
\n
\n- \n
$$
\hat{H}_{XY} = J_x \sum_{\langle i,j \rangle} X_i \otimes X_j + J_y \sum_{\langle i,j \rangle} Y_i \otimes Y_j.
$$
\n
\n- \n
$$
\hat{H}_{\text{Heisenberg}} = J_x \sum_{\langle i,j \rangle} X_i \otimes X_j + J_y \sum_{\langle i,j \rangle} Y_i \otimes Y_j.
$$
\n
\n- \n
$$
\hat{H}_{\text{honeycomb}} = -J_x \sum_{x-\text{link}} X_i \otimes X_j - J_y \sum_{y-\text{link}} Y_i \otimes Y_j - J_z \sum_{x-\text{link}} Z_i \otimes Z_j.
$$
\n
\n

 $2Q$

Barry C. Sanders [Algorithmic Quantum Simulation](#page-0-0)

Time-dependent Hamiltonian evolution

Problem:

For $\hat{H} = \sum_{j=1}^m \hat{H}_j$ with each Hamiltonian $\hat{H}_j: \mathbb{R} \to \mathbb{C}^{N \times N}$ P-differentiable, construct

$$
U(t, t + \Delta T) := \mathcal{T} \exp \left\{-i \int_{t}^{t + \Delta t} du \hat{H}(u)\right\}
$$

as a product of N exponentials exp $\left\{ -\mathrm{i}\hat{H}_{j_{P}}(t_{P})\Delta t_{P}\right\}$ within tolerance ϵ of $U(t, t + \Delta t)$, and find an upper bound for N.

Conditions for $\hat{H}(t)$ to be efficiently Q-simulatable

Theorem: Wiebe, Berry, Høyer, Sanders 2010

Let $\hat{H}(t)=\sum_{j=1}^m\hat{H}_j(t)$ with each $\hat{H}_j(t)$ 2k-differentiable on [$\mu, \mu + \Delta \lambda$]. Furthermore let timescale Λ satisfy

$$
\Lambda = \sup_{\lambda \in [\mu, \mu + \Delta \lambda]} \max_{q=0,\dots,2k, j=1,\dots,m} \left\| \partial_{\lambda}^q \hat{H}_j(t) \right\|^{1/(q+1)}
$$

with

$$
\epsilon \leq \frac{9}{10}\left(\frac{5}{3}\right)^k \Lambda \Delta \lambda
$$

and max_{x>y} $||U(x, y)|| \le 1$, then a decomposition $\tilde{U}(\mu + \Delta \lambda, \mu)$ can be constructed s.t. $\|\tilde{U} - U\| \leq \epsilon$ and s.t. the number of operator exponentials in U satisfies

$$
M \leq \left\lceil 3m\Lambda\Delta\lambda k \left(\frac{25}{3}\right)^k \left(\frac{\Lambda\Delta\lambda}{\epsilon}\right)^{1/2k} \right\rceil_{\text{Barrv C. Sanders}} \frac{1}{2}
$$

Q linear equation solver [Harrow Hassidim, Lloyd 2009]

Typical problem statement

Given matrix A and vector b, find x such that $Ax = b$; or given matrix A, vector b, and matrix M, find a good approximation of $x^{\mathsf{T}} M x$ such that x such that $Ax = b$.

- Replace b by $|b\rangle = \sum_{i=1}^{N} b_i |i\rangle$ in computational basis.
- Then $|x\rangle = \hat{\mathfrak{h}}^{-1}|b\rangle$, but inverting $\hat{\mathfrak{h}}$ is hard.
- $\hat{\mathfrak{h}}$ has eigenvalues λ_i and eigenvectors $|u_i\rangle$ for $j = 1, \ldots, N$.
- Express $|b\rangle = \sum_{j=1}^{N} \beta_j |u_j\rangle$.
- ldea: $|x\rangle = \hat{\mathfrak{h}}^{-1}|b\rangle \approx \sum_{j=1}^N$ $\beta_{\rm j}$ $\frac{\rho_j}{\lambda_j} |u_j\rangle$.
	- Kitaev phase-estimation approach: $\sum_{j=1}^{N} \beta_j |u_j\rangle |\lambda_j\rangle$.
	- Construct (non-unitary) linear map $|\lambda_j\rangle \mapsto \lambda_j^{-1} |\lambda_j\rangle$.
	- Uncompute $|\lambda_i\rangle$ to obtain approximate $|x\rangle$.

Summary

- Devised and costed efficient, accurate algorithms for Q simulation for \hat{H} held by an oracle.
- For oracle setting, an efficient query technique is developed to construct the Q simulation as a concatenation of Q circuits for one-sparse \hat{H} simulation.
- Run-time for Q algorithm is reduced by exploiting higher-order Suzuki method.
- Applications to many-body Q simulation.
- \bullet Q algorithms have been developed for time-dependent H , which is relevant to adiabatic Q computing, controlled systems and Q phase transitions.
- Q could be used as a linear equation solver.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right\} & \rightarrow & \left\{ \begin{array}{ccc} \Xi & \rightarrow & \leftarrow \end{array} \right. \end{array} \right.$