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Introduction

• No-cloning theorem of
{

quantum states 2

entanglement 3

• Quantum computation and cloning

• Approximate quantum cloners:

θ
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r̂

:: universal cloning (UC) machines 2

:: phase-covariant cloning (PCC) ma-
chines of

– equatorial qubits 2

– orbital states 4

:: entanglement cloners 3

Our model

Our aim is to investigate temperature effects on the perfor-
mance of quantum cloning machines.

Decoherence 5: Interaction with thermal environment ⇒ ther-
malization: pure states mixed states:

QCM

thermalization channel
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(1 − ǫ)|Ψ〉〈Ψ| + ǫ̺th
ǫ = 0 ǫ = 1

0 ∞
t

|Ψ〉〈Ψ|→ →̺th∼e−βH

[“QCM” stands for “Quantum Cloning Machine”].

We assume that:
{

tenv. ≪ τc, Tdiss. = min{T1, T2, TO}
τc . Tdiss.

• T1 and T2: time-scales with respect to energy and phase re-
laxation processes, respectively.

• TO: time-scale dictated by all other relaxation sources.

• τc: time-scale of the cloning process

Summary of the results

In the following sections, we show that:

◮when only the blank copy and the ancilla state are affected,
a redefinition of cloning transformations removes thermal ef-
fects.

◮ this thermalization may reduce performance of a quantum
cloner even below classical cloners.

◮ there exist some instances in which the quality of cloning for
phase-covariant cloners is less than that of universal cloners.

◮ an optimal entanglement cloner preserves its higher perfor-
mance (than the other schemes of entanglement broadcast-
ing) even when thermal noise comes into play.

Dissipative hardware

(1) Dissipative (mixed) ancilla

The possibility of optimal cloning with any pure state 2 ⇒ op-
timal fidelity with mixed ancilla is achievable.

(2) Dissipative (mixed) ancilla + blank

Attaching some new auxiliary system M → redefinition of
the cloning transformation 6 ⇒ optimal fidelity again

optimal cloning with thermally diluted machinery⇛

Duplicating a thermally
diluted qubit

The following matrix transformation can represent optimal uni-
versal and phase-covariant clonings:

(
a b
b∗ 1 − a

)

a
→

(
µ2a + ν2 2µνb

2µνb∗ µ2(1 − a) + ν2

)

a(a′)
.

〈Here
UC → ν2 = 1

6

PCC → ν2 = 1
4(1 − 1√

1+2 tan4 θ
)

Our Hamiltonian model is H = ω0σz/2. We also define η =
ω0β/2:

∴

{
ω0 > 0 , T ↑ ⇒ η ↓: opposed behavior
ω0 < 0 , T ↑ ⇒ η ↑: same behavior

Bures fidelity: F (ρ, σ) =

(

Tr

√

ρ1/2σρ1/2

)2

⇒ F (|Ψ〉, ̺out) :

F (θ, ǫ, η) = µ2[1 − ǫ + ǫ(e−η cos2 θ
2 + eη sin2 θ

2)/Z]

+(µν − µ2/2)(1 − ǫ) sin2 θ + ν2,

∴

∂ηF =
−µ2ǫ

2 cosh2 η
cos θ ⇒ ∀ǫ :







θ < π
2 ⇒ F (η) ↓

θ = π
2 ⇒ F (η) = constant

θ > π
2 ⇒ F (η) ↑

And in high temperature limit (η → 0)

��
��

positive

∂ǫF = −µ(ν sin2 θ +
µ

2
cos2 θ) ⇒ ∀ θ : F (ǫ) ↓

Universal cloning
F

η

F

η0 1 2 3 4 5

0.6

0.65

0.7

0.75

0 1 2 3 4 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a) (b)
π/4π/4

π/3π/3

π/2π/2

2π/32π/3

3π/43π/4

Phase-covariant cloningǫ = 5/11 ǫ = 2/3ւ
տր

ց
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UC: PCC:

At low temperature and ω0 > 0 (η → ∞):
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universal: ∀θ ∈ [0, π) ⇒ F (ǫ) ↓
phase-covariant: for θs & 2.52 and less than π rad ⇒ F (ǫ) ↑
Important point:

for some (ǫ, θ, η) we see that FUC > FPCC
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In the case of universal cloning:

ǫ <
cosh η

e−η sin2 θ
2 + eη cos2 θ

2

⇒ Fqua. > Fclass. =
1

2

otherwise a classical cloner is better than quantum cloner.

⇒ η > 0 & θ > π/2
η < 0 & θ 6 π/2

}

⇒ Fqua. > Fclass.

Cloning of thermal
entanglement

Clean state: |Ψ−
α 〉ab = α|01〉ab −

√
1 − α2|10〉ab : α ∈ R &

|α| 6 1

Hamiltonian model: H = J(σa
xσ

b
x + σa

yσ
b
y)

Via: local cloning: (i) with two optimal UC machines 7

Non-local cloning:







(ii) with UC machine of 4-level quantum
states 2

(iii) by an optimal entanglement cloner 3

◮ When ǫ = 0 (no external noise), we could write the state of

each clone in cases (ii) & (iii), and nonlocal copies of case (i) in
the following compact form

��
��

ց
machine parameter

̺out = 1−M
4 (|00〉〈00| + |11〉〈11|)

+[1+M
4 + L(2α2 − 1)]|01〉〈01| + [1+M

4 − L(2α2 − 1)]|10〉〈10|
−Mα

√
1 − α2(|01〉〈10| + |10〉〈01|),

where

Mi = (2/3)2 , Mii = 3/5 , Miii = 6A2 + 4AC

A =
1

3

√

1

2
+

1√
13

, C =
A

2
(
√

13 − 3) , L =
3

26
(1 + 2M +

√

1 + 4M − 9M 2).

◮When temperature comes into play, the above equation takes
the following general form

̺out = (Mǫ
Z + 1−M

4 )(|00〉〈00| + |11〉〈11|)
+[M (1−ǫ

2 + ǫ cosh γ
Z ) + 1−M

4 + L(1 − ǫ)(2α2 − 1)]|01〉〈01|
+[M (1−ǫ

2 + ǫ cosh γ
Z ) + 1−M

4 − L(1 − ǫ)(2α2 − 1)]|10〉〈10|
−M [(1 − ǫ)α

√
1 − α2 + ǫ

Z sinh γ](|01〉〈10| + |10〉〈01|),

in which Z = 2(1 + cosh γ) and γ = 2βJ .

∴
ǫ = 1 & ∀γ

α = ± 1√
2

& ∀ǫ & ∀γ

}

⇒ ̺out = M̺in + (
1 − M

4
)I

Applying positive partial transposition criterion 8 results in some
temperature and state-dependent regions over which the out-
put cloned pairs are inseparable. For example, at room temper-
ature, our clones are entangled when (for more details see 1)

0 6 ǫ < (1 − 1

3M
) & |α2 − 1

2
| <

√

(3M (1 − ǫ) − 1) (M (1 − ǫ) + 1)

4M (1 − ǫ)
.

Remark1.– For some “T ” ∈ intermediate (high & low) temper-
atures, ∃ intervals of α2 (ǫ) in which the cloned pairs are sep-
arable: M ↑ ⇒ the length of these intervals ↓. Recall:
Miii > Mii > Mi.

Remark2.– For a given α2 (ǫ) ∈ moderate (two limits of) tem-
peratures, the range of ǫ (α2) in which the clones are entangled
↑ when M ↑.

Entanglement phase diagrams of input and output states
(achieved from three different schemes of entanglement
cloning/broadcasting), when α = 1/

√
2 are

(γ−1
c , 1)ւ

↑
ǫ

→ γ
−1
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The regions labeled by 1 (2) indicate (no-) entanglement re-
gions. Here, we also have γc = ln[(M + 1 + 2

√
M2 + M)/(3M −

1)] & ǫ2 = [(M − 1 + 4Mδ)(1 + cosh γ)]/{2M [1 − sinh γ + 2δ(1 +
cosh γ)]}.

⇒
The advantage of optimal entanglement cloner Miii
over other studied scenarios in the sense of robustness
against thermal perturbations.
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