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What is Quantum Random Walk?

e Classical: random walk in one dimension describes a particle that
moves in the positive or negative direction according to the
random outcome of some unbiased binary variable (e.g., a fair
coin).

e Quantum: The particle with two degree of freedom (for example
spin) can move left or right according to its spin and one unitary
operator can play coin roles (for example Hadamard operator).In
quantum random walk (QRW) we have 2 operator, coin operator
(C) and translation operator (S).C act on Hilbert space of
particle’s spin (coin space) Hc and S act on Hilbert space of
particle’s position Hp. C makes superposition of particle’s spin
and S moves particle left or right according to particle’s spin. The
QRW of n step defined as the transformation U", where U, acting
onH=Hc @ Hp. U=s(c®I) ,

If the initial state be in origin with spin down and our coin be

Hadamard(H).
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In general, after n step the state of particle is.
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Quantum random walk can be different with classical random walk
because of existence of superposition in quantum which is impossible in
classic.
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Fig.I: (a) QRW probability distribution with 100 steps and (b) classic RW with 100 steps

Difference between CRW and QRW

e CRW on the line after T step has variance 6°=T, so the expected
distance from the origin is of order 6=T"? but the QRW has variance
that scales with o7 o< T? , which implies that the expected distance
from the origin is of order ool  (The QRW propagates
quadratically faster!)[1].

e The QRW spreads roughly uniformly over the positions in the
interval [-T'"2, T'2]. This is again in stark contrast to CRW case in
which the distribution is peaked around the origin and drops off
exponentially[2].

We can compare the effects of initial state on probability distribution.

On the other hand we can take another coin for QRW. The must famous

coins are discrete Fourier transform (DFY and Grover coin ( G) that

define as follows [3].
DFT| )=
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If we take {x).x=0.. ,3\\0):\TMI):\7,+),\_):\+,7>A\3):\H)) we have

These two operators aren’t separable and we never can write them in
cross form. These operators can produce entanglement unlike the
Hadamard coin.

Fig.3: Probability distribution for Symmetry state |®,) :%q 7)444)'@%”7)4»1‘4»)] with: (a) DFT coin
and (b) G coin

You can compare Fig.3 and (c) in Fig.2 together to understand difference
of distribution with affect of different coin.

Standard deviation is a good parameter that show the expected distance
from the origin and we can take the number of step as time and define the
Ac /At as speed of spread.

Quantum Random Walk in two dimensions

In two dimensions QRW, one particle is free to move in two directions
according to its initial spins. So we require defining generalizations of
coin (C) and generalization of translation operator (S) to act on H, ®
H, and two dimensional lattices Hp respectively and our initial state
should has two separate particles which this particles spins define
direction of movement in two directions. We can generalization these as
follows.

. S=expl-2is'®P -2i8°®P,)

Operator C act on spins space and makes superposition for each spin
independently and operator S according to first spin move particle along
X axes and according to second spin, move particle along ¥ axes.

In QRW we have three items that they affect the probably distribution.

1. Initial state

2. Coin

3. Translation operator

In two dimensional state we can take the initial state as separable state,
symmetry state,... and even entangle state which is impossible in one
dimensional QRW.

Fig.2: Probability distribution with Hadamard coin and initial state: (a) "v’) , (b) Entangled state
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1 calculate standard deviation with Hadamard,DFT and G coin for
different initial state.

10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 19 20

Fig.4: time dependence of Standard deviation with Hadamard, D!

and G coin for initial state (a) separable
I+

As we mentioned before, the standard deviation is linearly dependence
with time (number of state) and you can see this in Fig.4 and Table.1 and
it shows that the DFT and G decrease the Standard deviation. “This
suggests that the entanglement between the spatial degrees of freedom
serves to reduce the rate of spread”.

state |~-) and (b) entangled state | ¥")

HoH DFT G
=) 0.66143 0.56052 0.54546
5} 076534 059377 053538
[0 0.75983 061806 059167

Table.1: The slope of standard deviation as function of time

We can see that both of initial state and coin affect the probability
distribution and speed of spread.

We will show that the translation operator can affect the probability
distributions too.

But we can show that the CTO can make entanglement for separable state
and increase it for entangled state in compare with normal translation
operator.

To show the effect of CTO on entanglement we should introduce one
measure for measurement of entanglement. One of good measure for
family of two qubit states is concurrence which defines as follows [4].

Clp)=max{0o, 4, -4 -4 — 4,}
Where the 4, are the non-negative eigenvalues, in decreasing order, of

Hermitian matrix Rzm and 5 = ((,\ ®o, )p‘(g‘ ®0,)

When it is expressed in standard basis we can use concurrence C(p) as a
measure of entanglement. For pure state|y) =a|—-)+a|~++a|+-+a|++), the
concurrence takes the form

cw)=[y|7)=2aa,
Each point of two dimensional lattices in QRW is pure state; therefore we
can calculate concurrence for each point.
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Fig.6: compare of concurrence and probability distribution for CTO and normal operator for different initial

states |-, Entangled state |-) - () - [)) and Symmetry sate [a.) - - (- | Do F-(-)+ 1)

You can see in Fig.6 CTO can produce entanglement for separable
state and it is very interesting that in CTO case the more probable state
has more concurrence unlike the normal case.

In normal case even you take the entangled state as initial state the more
probable state has less concurrence and vice versa.

We can define expected concurrence as a follows which determine
average amount of concurrence when you choice randomly many point
from lattice.

EC(y,))= \Zf’(x,y’)dlx.y),,)

Where P(x,y) is probability of finding particle in (x,y) and [x.»), is
projection of particle states after n step in (x,y).
I calculate expected concurrence state and speed of spread (Ac/At) for
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different initial state and summarize them in Table.2 for compare.
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Effects of translation operator on QRW

You saw in translation operator the first spin determined the move
direction along X axis and second spin did it along Y axis. These axes
were independent. (interference between particle positions made
distribution). Therefore we had only two one dimensional QRW in two
separate axes.

If we can use first spin as condition that determine the axes, we will have
ORW that axes is random and in fact we will have two dimensional QRW
with RW on position and RW on axes.

We can do it with defining “Conditional Translation Operator” (CTO) as
follows. )

-il1-o! jpsiep,-ili+o! psi®P,

5, = Hmetpsenlinasior)

where o, i=x,y,z are pauli matrices and S,
operator. This operator move particle along X axis according the second
spin when the first spin be (+) and move particle along Y axis according
the second spin when the first spin be (-).

i=x,y,z are spin

Sl )@l /)=l /1) =)@l == ®li-1j-1)
Conditionar) Sl =@l =) @li) LSl j)=| =) ©li-1 1)
Serol+-) +-)®|i-1, ) S|+l j)=|+-) ®i+1,j-1)
(,1,\++)®\/ By =|+H)®|i+1,j) S|+ @i, j) =|+4)®i+1,j+1)

By compare normal translation operator with conditional translation
operator we can see that in normal case the particle move along both of X
and Y axes in each step but in conditional case only one movement along
one axis happen in each step. Therefore we will expect that CTO
decrease expected distance (standard deviation).

Fig.5: compare of Normal and CTO with different initial state

Soeed of sprend 0661426 | 0765344 | 0759828

ACIEUL TN parr— 0 0.000543 0
Soead of sprend 0304747 | 0.430234 | 0.385983

cTo Expeoed conoumence | 0.005615 | 0.005835 | 0.002412

Table.2: speed of spread and concurrence for different initial state in Normal and CTO
case.

As mentioned before quantum random walk has three parts that affect
probability distribution and entanglement. The conditional translation
operator (CTO) can change the probability distribution and entanglement
(concurrence).

We saw that CTO decrease the expected distance from origin Ao and
speed of spread (AJ/N) it is result of one movement in one axis in each
step in CTO unlike two movements in two axes in Normal case.

All Ag is linear in time same as Normal case but its slope is less than
Normal case and proportional to slope of Normal case but the
proportional constant depends on initial state (Fig.5).

The interesting feature of CTO is creating entanglement for separable
state and its probability distribution is so that probable state (point) has
more entanglement (Fig.6).
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