
What is Quantum Random Walk?
• Classical: random walk in one dimension describes a particle that 

moves in the positive or negative direction according to the 
random outcome of some unbiased binary variable (e.g., a fair 
coin).

• Quantum: The particle with two degree of freedom (for example 
spin) can move left or right according to its spin and one unitary 
operator can play coin roles (for example Hadamard operator).In 
quantum random walk (QRW) we have 2 operator, coin operator 
(C) and translation operator (S).C act on Hilbert space of 
particle’s spin (coin space) HC and S act on Hilbert space of 
particle’s position HP. C makes superposition of particle’s spin 
and S moves particle left or right according to particle’s spin. The 
QRW of n step defined as the transformation Un, where U, acting 
on H= HC ⊗ HP .                    ( )ICSU ⊗= .                            ,    

If the initial state be in origin with spin down and our coin be 
Hadamard(H).
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In general, after n step the state of particle is.
0ψψ n

n U=
Quantum random walk can be different with classical random walk 
because of existence of superposition in quantum which is impossible in 
classic.

Fig.1: (a) QRW probability distribution with 100 steps and (b) classic RW with 100 steps

Difference between CRW and QRW
• CRW on the line after T step has variance σ2=T, so the expected 

distance from the origin is of order σ=T1/2 but the QRW has variance 
that scales with 22 T∝σ   , which implies that the expected distance
from the origin is of order T∝σ (The QRW propagates
quadratically faster!)[1].

• The QRW spreads roughly uniformly over the positions in the 
interval [-T1/2, T1/2]. This is again in stark contrast to CRW case in 
which the distribution is peaked around the origin and drops off 
exponentially[2].

Quantum Random Walk in two dimensions 
In two dimensions QRW, one particle is free to move in two directions 
according to its initial spins. So we require defining generalizations of 
coin (C) and generalization of translation operator (S) to act on H2⊗
H2 and two dimensional lattices HP respectively and our initial state 
should has two separate particles which this particles spins define 
direction of movement in two directions. We can generalization these as 
follows. 
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Operator C act on spins space and makes superposition for each spin 
independently and operator S according to first spin move particle along 
X axes and according to second spin, move particle along Y axes. 
In QRW we have three items that they affect the probably distribution.
1. Initial state
2. Coin
3. Translation operator
In two dimensional state we can take the initial state as separable state, 
symmetry state,… and even entangle state which is impossible in one 
dimensional QRW. 

Fig.2: Probability distribution with Hadamard coin and initial state: (a) −−, , (b) Entangled state
( )−+−+−=Ψ− ,,
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We can compare the effects of initial state on probability distribution. 
On the other hand we can take another coin for QRW. The must famous 
coins are discrete Fourier transform (DFT) and Grover coin ( G) that 
define as follows [3].
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If we take { }++=−+=+−=−−== ,3,,2,,1,,0|3,...,0,µµ we have
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These two operators aren’t separable and we never can write them in 
cross form. These operators can produce entanglement unlike the 
Hadamard coin.

Fig.3: Probability distribution for Symmetry state ( ) ( )++−⊗++−=Φ iis 2
1

2
1 with: (a) DFT coin 

and (b) G coin

You can compare Fig.3 and (c) in Fig.2 together to understand difference 
of distribution with affect of different coin.

Standard deviation is a good parameter that show the expected distance 
from the origin and we can take the number of step as time and define the 

t∆∆σ as speed of spread.

I calculate standard deviation with Hadamard,DFT and G coin for 
different initial state.

Fig.4: time dependence of Standard deviation with Hadamard,DFT and G coin for initial state (a) separable 
state  −−, and (b) entangled state ( )−+−+−=Ψ− ,,
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As we mentioned before, the standard deviation is linearly dependence 
with time (number of state) and you can see this in Fig.4 and Table.1 and 
it shows that the DFT and G decrease the Standard deviation. “This 
suggests that the entanglement between the spatial degrees of freedom 
serves to reduce the rate of spread”.

Table.1: The slope of standard deviation as function of time 

We can see that both of initial state and coin affect the probability 
distribution and speed of spread.
We will show that the translation operator can affect the probability 
distributions too.

Effects of translation operator on QRW
You saw in translation operator the first spin determined the move 
direction along X axis and second spin did it along Y axis. These axes 
were independent. (interference between particle positions made 
distribution). Therefore we had only two one dimensional QRW in two 
separate axes.
If we can use first spin as condition that determine the axes, we will have 
QRW that axes is random and in fact we will have two dimensional QRW 
with RW on position and RW on axes.
We can do it with defining “Conditional Translation Operator” (CTO) as 
follows.

( ) ( )( )xzzyzz PSIiPSIi
CTO eS ⊗⊗+−⊗⊗−−=

2121 σσ

where zyxii ,,=σ  are pauli matrices and zyxiSi ,,=  are spin 
operator. This operator move particle along X axis according the second 
spin when the first spin be (+) and move particle along Y axis according 
the second spin when the first spin be (-).
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By compare normal translation operator with conditional translation 
operator we can see that in normal case the particle move along both of X 
and Y axes in each step but in conditional case only one movement along 
one axis happen in each step. Therefore we will expect that CTO 
decrease expected distance (standard deviation). 

Fig.5: compare of Normal and CTO with different initial state

But we can show that the CTO can make entanglement for separable state 
and increase it for entangled state in compare with normal translation 
operator.
To show the effect of CTO on entanglement we should introduce one
measure for measurement of entanglement. One of good measure for 
family of two qubit states is concurrence which defines as follows [4].

( ) { }4321,0max λλλλρ −−−=C

Where the iλ are the non-negative eigenvalues, in decreasing order, of 
Hermitian matrix ρρρ ~≡R  and ( ) ( )yyyy σσρσσρ ⊗⊗= *~

When it is expressed in standard basis we can use concurrence ( )ρC  as a 
measure of entanglement. For pure state +++−+++−+−−= ,,,, 4321 aaaaψ , the 
concurrence takes the form

( ) 32412~ aaaaC −== ψψψ

Each point of two dimensional lattices in QRW is pure state; therefore we 
can calculate concurrence for each point. 

Fig.6: compare of concurrence and probability distribution for CTO and normal operator for different initial 
states −−,  , Entangled state ( )−+−+−=Ψ − ,,
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You can see in Fig.6 CTO can produce entanglement for separable 
state and it is very interesting that in CTO case the more probable state 
has more concurrence unlike the normal case.

In normal case even you take the entangled state as initial state the more 
probable state has less concurrence and vice versa.
We can define expected concurrence as a follows which determine 
average amount of concurrence when you choice randomly many point 
from lattice.
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Where ( )yxP ,  is probability of finding particle in (x,y) and n
yx,  is

projection of  particle states after n step in (x,y).
I calculate expected concurrence state and speed of spread ( t∆∆σ ) for 
different initial state and summarize them in Table.2 for compare.

HH⊗
Speed of spread 0.661426 0.765344 0.759828

Normal Expected concurrence 0 0.000543 0
Speed of spread 0.394747 0.430234 0.385983

CTO
Expected concurrence 0.005615 0.005835 0.002412

Table.2: speed of spread and concurrence for different initial state in Normal and CTO 
case.

Conclusions
As mentioned before quantum random walk has three parts that affect 
probability distribution and entanglement. The conditional translation 
operator (CTO) can change the probability distribution and entanglement 
(concurrence).
We saw that CTO decrease the expected distance from origin σ∆  and 
speed of spread ( )t∆∆σ  it is result of one movement in one axis in each 
step in CTO  unlike two movements in two axes in Normal case.
All σ∆  is linear in time same as Normal case but its slope is less than 
Normal case and proportional to slope of Normal case but the 
proportional constant depends on initial state (Fig.5).
The interesting feature of CTO is creating entanglement for separable 
state and its probability distribution is so that probable state (point) has 
more entanglement (Fig.6).
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