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1. Introduction

One of the cornerstones of our present understanding of the Nature is quan-
tumn physics. This theory has “nonlocal” characteristics [1-3], due to quantum
entanglement - let us just mention the EPR Einstein-Podolsky-Rosen paradox
[4] and the violation of the Bell’s inequalities [5, 6] which have been exper-
imentally confirmed in several experiments, see e.g. Refs. [7, 8] (more on
quantum-mechanical non-locality non-locality see also Refs.[9-18].

The most remarkable property of the non-relativistic quantum mechanics
(which is inherently nonlocal) is that it peacefully coexists with the special
theory of relativity in a sense that one cannot exploit quantum-mechanical en-
tanglement between two space-like separated parties for communication of
classical messages faster than light [19-28].

It turns out that quantum correlations first discussed in their seminal pa-
per by Einstein, Podolsky, and Rosen [4] result in the measured probabilities
which satisfy the causal communication constraint [18] 1. This means that the
probability of a particular measurement outcome on any one part of the system
should be independent of measurement performed on the other parts. This re-
quirement should guarantee the absence of faster-than-light signals [19] that is
usually called as the no-signaling. 2.

This fundamental feature of quantum theory, that is that quantum-mechanical
correlations (entanglement) entanglement cannot be used for superluminal com-
munications has been challenged in 1982 by Nick Herbert [36] in his proposal

"This “signal locality” [25,.29], is also referred to in the literature as the “simple locality” [30, 31], the
“parameter independence” {32], or “physical locality” [33].

ZProbably I should note here that the signal locality can be formulated independently of quantum theory
[25, 30, 31, 34, 35]
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of the FLLASH - the superluminal communicator *. The key idea of the FLASH
relies on the possibility to copy (clone) unknown states of quantum systems.
Herbert has shown that if the quantum cloning cloning would be possible, then
we would be able to enjoy a comfort of super-luminal communication mediated
by entangled quantum systems

Herbert’s idea has been criticized instantly. Namely, Dieks [37] and Wootters
and Zurek [38] have shown that perfect cloning cloning of unknown quantum
states is impossible (see Section III). This seemingly closed the whole issue.
Years later Mark Hillery and myself [39] have asked a question: “Even though
the perfect copying of unknown states is impossible, how well we can clone
quantum states?” This question then has triggered a whole series of papers
devoted to investigation of universal quantum machines (UQM).

UQM’s are quantum mechanical devices that take a certain number of quan-
tum systems (e.g. qubits) as an input and produce an output that is as close
as possible to some ideal target state (in general target state depends on input).
A typical example is a process of universal cloning. The universal cloning
machine produces copies of an input qubit in an unknown state, such that the
fidelity fidelity of the copies does not depend on the input state [39-59]. In fact
exactly this type of machine has been implicitly assumed by Herbert [36]. It
has been recently shown [60-64] that for the simplest case (namely a cloner
producing 2 copies from 1 qubit) a bound on the quality of the clones could
be derived from the no-signaling condition is identical to the bounds derived
from quantum mechanics. This means that if the clones were only a little bit
better than allowed by quantum mechanics, one could 1mmed1ately use them
for superluminal communication.

So in my lectures, I am going to use the intriguing connection between
cloning cloning of quantum states and faster-than-light signaling [65-71] to
describe several interesting problems related to some aspects of optimal ma-
nipulations with quantum information. To make my presentation selfcontent
in Section 2 I will discuss in some detail physical origin of Herbert’s proposal.
Section 3 will be devoted to the no-cloning theorem, while in Section 4 I will
describe universal quantum cloners. In Section 5 I will show how bounds on
cloning can be derived from the no-signaling condition and in Section 6 I will

SFLASH is an acronym for the First Laser-Amplified Superluminal Hookup.

4 At the IV Adriatico Conference on Quantum Interferomeiry (12 — 15 March 2002, Trieste, Italy) in general
discussion Asher Peres has admitted that he was one of the referees of Herbert’s paper [36] and even though
he found it wrong he had recommend it for publication. According to Peres, the paper was so fundamentally
wrong that it deserved the publication. Interestingly enough, Giancarlo Ghirardy who was at the conference
as well, has responded to the confession of Asher Peres, that he was the second referee of the same Herbert’s
paper. Unlike Peres, he has recommend.the paper to be rejected and in his referee report he has proved the
no-cloning theorem which has been proved independently and published by William Wootters and Wojciech
Zurek [38] (for more details see Section III).
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discuss the connection between cloning, signaling and generalized measure-
ments. The rest of the notes are devoted to universal NOT gate that “flips” a
qubit in an unknown state. t In Section 7 I will describe the U-NOT gate and
in Section 8 I will present experimental realization of this gate. I conclude my
notes in Section 9.

2. Bell Telephone & FLASH

Let us start an overview of the signaling based on quantum non-locality non-
locality with a description of the “Bell telephone” and then will continue with
a more detailed description of Herbert’s idea for superluminal communication
based on amplification (cloning) of individual events in the measurement of
entangled particles.

2.1 Bell telephone

The Bell telephone is supposed to be a physical device which “uses” for
communication quantum non-locality. In order to operate such device first
maximally entangled particles (let these be qubits) have to be distributed to two
parties (Alice and Bob). This can be achieved by using polarization states of
two-photons. The polarization-entangled pairs of photons are experimentally
generated in a parametric down-conversion process in a nonlinear crystal [72].
These entangled photons are generated in a singlet state

1
V2

where | 1) and | |) describe two polarization states of the photon in a given
basis (e.g. horizontal/vertical polarization). The singlet state (1) exhibits per-
fect quantum correlation (entanglement) for polarization measurements along
parallel but arbitrary axes. This means that the state (1) is equivalent under
local transformations to the state

1

1Y) aB = ﬁ(l —)al =) =1 —=)al <)), 2)

W)ap = —=(Nal )z — 1 1)al T)B), (1)

where | ~) = (| T) £ | |))/V/2. Here I stress that even though results of mea-
surements are perfectly correlated the actual outcome of an individual measure-
ment on each of the particles is inherently random.

Alice and Bob receive their particles well before any communication via
quantum channel is performed. It is also assumed that the singlet state does not
decohere under the influence of the environment. Once the entangled particle
are distributed Alice might like to send a message to Bob. To do so she decides
to perform a measurement on her particle. She can rotate her measurement
device arbitrarily, but in order to make our discussion simple let us assume that
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she is going to perform a measurement in one of the twobases ({| 1),| |)} and
{l <),]1 =)}). After Alice performs her measurement in the given basis (let
say, {| 7),| 1)}) then she can predict with certainty what Bob’s result would
be if he performs the measurement in the same basis. Hence if Bob can attain
somehow the information about the measurement basis he would then have a
possibility of receiving signals at the superluminal speed.

Even though Alice can determine which basis she will use she definitely is
not able to predetermine the outcome of her measurementtobe | T) or | |) since
both these results materialize with probability a 1/2. Therefore the message
can best be defined to be Alice’s choice in which basis she is going to perform
a measurement on her qubit. That is, which observable she is going to measure
(we will not consider an option that she choose not to measure at all). In this
situation Bob’s task is to determine the state of a qubit on his side of the Bell
telephone via a single measurement on his qubit.

Formally, the signal from Alice is encoded into a binary alphabet with each
of the two letters corresponding to a specific choice of Alice’s basis, i.e. the
measurement procedures 4(): (s = 0, 1), '

AQ I Dat o1 | all | ® 15}, 3)
AV D al— @15 | =)A= | ®15),

respectively. This means that if Alice wants to send a logical “0” (“1”) then
she performs a measurement .4(®) (4(1)). There is no way to say a priori what
the outcome of her measurement will be. So after measuring e.g. A© Bob’s

particle will be either in the state p%o) = | T)(1 | or in the state pio) = (|
These outcomes are realized with the same probability. Analogous situation
takes place when Alice sends a logical “1”, i.e. performs the measurement
AW,

The main task of Bob is to determine which state his particle is in. To do so
he performs a measurement on his particle. For simplicity, let us assume that
he performs a projective measurement B = {O,}, such that O, = |2, (¢, |
and ) O, = 1. Ideally, Bob wants to perform a measurement such that
Tr[O, 52)] = 1 for just one of the “input” states pﬁz,) while for all others
the trace is equal to zero. But this requires the signal (input) states corre-

sponding to different outcomes of Alice measurements to be orthogonal, i.e.

Tr[pl®, pg-s/)] = 0. Which obviously, is not the case in the present scheme.
Therefore no projection measurement exists which would yield a reliable sig-
nal analysis from individual ontcomes. If many entangled pairs of qubits have
been used for communication using the above scheme, then depending which
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of the two measurements

BO . {140 | N1 1a®] {1}, )
BY . {140 <)l |, 1a®| —=)B{— |},

Bob performs his resulting ensembles of qubits are represented by two density
operators '

(B) _
oo =
o2

e

IDA T+ DU =51 s

() |+ 1 =)= D=3t

which are identical. Consequently, within the linear quantum mechanics (for
further discussion see Section 4) these two ensembles are indistinguishable and
no information can be signalled this way. In other words, Bob is not able to
find what decision has been made by Alice. Here I stress once again, that even
though the two ensembles p%jf) and p(f ) are indistinguishable, the individual

outcomes of particular measurements are in specific pure states.

[N VR

2.2 Herbert’s FLASH

In his proposal of the FLASH Herbert [36] has clearly indicated that his
“hookup” is based on the “novel” type of the quantum measurement performed
on Bob’s side. According to Herbert: “Superluminal message (alternation of
individual events) can be sent but not decoded”. Therefore the FLASH was
supposed to operate in such a way that via a measurement of an individual
quantum system (polarization states of a photon) one can determine the state of
the system. The “novel” aspect of the FLASH was an idea to use active detectors
such that before they register the incoming state they first multiply (copy, clone)
this state into a large collection of particles all in the same (incoming) state.
This would mean that the FLASH realizes the copying (cloning) cloning of an
unknown pure state [1)) of the incoming particle with the Hilbert space H, on
N other particles of the same physical origin, i.e. the cloner is described by a
map C(H) — C(H®") such that

[)0)2N =D — |y @ (6)

where |0) is some known state of the systems onto which the information is
going to be copied (see below).

Once this collection of clones is generated then with the help of an opti-
mal measurement better (perfect) determination of the incoming state can be
performed. So to quote Herbert “FLASH does not really deal with statistical
aggregates of photons but with the aid of perfect xeroxing provided by the
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laser laser effect is able to examine the polarization of each individual photon.”
Herbert calls this as the third type of measurement (as we will see later this
measurement us nothing else but the well known generalized POVM measure-
ment [73, 74]). So the question is whether this type of the active measurement
can be physically realized and whether via the improvement of the detection
scheme faster-than-light communication can be established.

The main Herbert’s idea is to substitute the standard projection measure-
ment by a generalized measurement which includes also an amplifier amplifier
(cloner). In quantum theory any amplification is inevitable accompanied by
quantum noise which irreversibly spoils the signal [75, 76]. Herbert was aware
that “a serious objection to FLASH concerns the noise ... of the copying pro-
cess”. Nevertheless he has not performed a detailed analysis of the problem.
He just presented a vague argument that the noise induced by the stimulated
emission via which copying of the incoming photon is performed, is after all
not a serious obstacle.

3. No-cloning Theorem

So can it be that within a linear quantum mechanics the transformation (6) can
be realized? In order to illuminate this question I will formulate the no-cloning
cloning theorem. The issue of cloning, or (self) reproducing of quantum states
has been first discussed by Wigner [77] (see below). The no-cloning theorem
itself has been proved independently by Dieks [37], and Wootters and Zurek
[38] and others [78-81]. I will also present Mandel’s proposal [82] for cloning
of polarization states of photons via down conversion. Mandel was the first to
present an explicit calculation of the amount of noise which is inevitable for
cloning of quantum states.

3.1 Pre-no-cloning history

Probably the first account on quantum cloning was done by E.P. Wigner
[77] in his analysis of earlier work by W.M. Elsasser devoted to a discussion
of the origin of life and the multiplication of organisms [83]. Wigner has
presented a quantum-mechanical argument according to which “the probability
is zero for existence of self-reproducing states”. The argument is based on
two assumptions: Firstly just systems with finite-dimensional Hilbert spaces
are considered. Secondly, it is assumed that the Hamiltonian Hamiltonian
which governs the behavior of a complicated system is a random symmetric
matrix, with no particular properties except for its symmetric nature. Under this
assumptions Wigner has shown that “it is infinitely unlikely that there beany
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state of the nutrient > which would permit the multiplication of any set of states
which is much smaller than all possible states of the system.” This conclusion
is based on the fact that the input state of the system and the cloner and their
ideal output states do not specify the S matrix describing the self-reproducing
(cloning) process.

I will not go into further detail of Wigner’s argument. The reason why I
comment on this work is to show that the first idea of cloning cloning quantum
states has not been related to the problem of signaling, but has been based on
information aspects of quantum theory, 6

3.2 Wootters-Zurek theorem

Wootters and Zurek [38] have presented a very simple proof that the perfect
cloning transformation (6) for unknown quantum states is impossible.Their
proof goes as follows: in order to clone an unknown state |1/) a device (quantum
cloner) is needed. This cloner is initially prepared in a state |.S) which does not
depend on |¢). Inaddition, a set of (IV — 1) particles onto which the information
is going to be copied is available. These particles are prepared in a known state
denoted as |0). Then the perfect copying transformation I/ can be written as

1) |0)BN =115y Hjpy@N 5 )

where |S’) is the state of the quantum copier after the cloning has been per-
formed. Since the input is totally unknown, the transformation ¢/ has to work
for an arbitrary input. So let us assume two input states |¢)) and |¢)) both
transformed according to Eq. (7)

U (1P NI15)) = [p)eN|s);
U (902N I1s)) = [eN]s). ®)
Taking the inner product of the left-hand sides of above equations we find
(Wl) = (W), )

which can only be fulfilled if the two states [¢) and |¢) are either identical or
orthogonal. So the ideal (perfect) cloning device for arbitrary states does not

3The “nutrient” is equivalent to two quantum systems the clone and the ancilla (i.e. the cloner itself) via
which the information is distributed.

SWithout any further exploration of the idea I just note that the impossibility of self-reproducing units has
a direct consequence in a theory of reproducing quantam cellular automata which has not been properly
explored yet.
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exist . Perfect cloning machines would require nonlinear dynamics [38]. It
is well known (see Refs. [65, 66, 67]) that non-linear dynamics might lead to
violation of the signaling constraint. So it is not surprising that the nonlinear
dynamics allows for perfect cloning of unknown states, since this process again
leads to the violation of the signaling constraint.

Very similar argument as the one presented by Wootters and Zurek [38]
has been presented independently by Dieks [37]. Yet another version of the
no-cloning theorem is due to Yuen [78] who pointed out a relation between
cloning cloning and generalized measurements.

The no-cloning theorem has been generalized (the so-called no-broadcasting
theorem) for statistical mixtures by Barnum ez al. [79]. The extension of the
no-cloning theorem for entangled systems has been presented by Koashi and
Imoto [80]. Lindblad [81] has recently presented the most general version of
the no-cloning theorem.

33 Mandel’s analysis

The no-cloning theorem says us that unknown states cannot be perfectly
cloned. But what is the limit on cloning? How good the copies can be made?
If the imperfection is small enough then Herbert’s FLASH can still be used for
superluminal communication. The Wootters-Zurek theorem itself does not rule
out a possibility of signaling due to imperfect cloning. Interestingly enough,
this crucial question for the FLASH has not attracted due attention. To be more
specific, in his short note Mandel [82] was the first to study an unavoidable noise
due to amplification (cloning) of a polarization state of a photon via interaction
with a two-level atom two-level atom. In particular, Mandel has considered
an incoming photon with two possible polarizations €1 and £5. The state of
a single incoming photon is denoted as |1g,) (with s = 1,2). The atomic
amplifier amplifier in the ideal case generates out of the incoming photon two
photons with the same polarization, i.e. |1z,) — {2z,). So, following Mandel
[82], let us consider a two-level atom with the transition dipole moment . The
atom is initially prepared in the excited state |e). The interaction Hamiltonian
Hamiltonian governing the interaction between the atom and an electromagnetic
field is considered in the electric-dipole and the rotating-wave approximation,
ie.

2
Hi=g% [g- & oal + h.c.] , (10)
s=1

71t has to be stressed that the linearity argument based on which the no-clening theorem is proved does not
forbid the amplification of known states. That is a cloning device designed specifically for a given input state
can be constructed without any violation of the no-signaling constraint.
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where o* are Pauli spin-flip operators and al (as) is the creation (annihilation)
operator of a photon with a polarization £;. If we consider the initial state
of the electromagnetic field to be |15,0z,) then dynamics governed by the
Hamiltonian (10) forces the field to evolve in a short-time limit into the state

\/iﬁ é‘{|2€1a052> + ﬁ ) 5_;“5'1» 152)

|1§'1>|0€2> - - .
21 112 + |2 - e512)'/?

(11)

The state |2z,0z,) attributes to the stimulated emission while |1z, 15,) de-
scribes a spontaneous emission. So the perfect cloning cloning is accompanied
with a noise due to spontaneous emission.

The amplifier amplifier (10) is designed for cloning of a specific input state.
Mandel has also presented a generalization of the amplifier amplifier such that
it clones an arbitrary polarization state with the same fidelity fidelity (i.e. this is
a prototype of the universal cloning machine - see Section 4). This input-state
independent amplifier amplifier consists of two resonant atoms with orthogonal
transition dipole moments fi, = |u|€a; [y = |u|ép, Where &, and &, are two
complex orthogonal unit polarization vectors. The interaction Hamiltonian
Hamiltonian between the atoms and the electromagnetic field is taken in the
form

2
H; = gz [(oa_ fa + 0y ﬁb) -é';al + h.c.] . (12)
s=1

If the two atoms are initially excited then in a short-time limit the dynamics (12)
generates the electromagnetic field in a state described by a density operator
(the atomic degrees of freedom are traced-off):

pgl,gl = §|2€13 052><251 ’ 052! + %'15717 152‘><1§1 ’ lé'gl (13)
As we will see later the fidelity fidelity of the cloning process (12) does not
depend on the polarization of the incident photon and of two atomic transition
dipole moments (providing these are orthogonal). So out of a state |15 ,0z,)
with an arbitrary polarization we obtain the two-photon state |2¢, ,0z,) with a
probability 2/3 which does not depend on the polarization. In addition to this
a noise, represented by the state |15, 15,) is generated in this process. I will
turn to this result of Mandel later 8. Here, following Wootters and Zurek I note
that to each “perfect clone” there is also one randomly polarized, spontaneously

8Mandel in his paper [82] refers to the Wootters-Zurek argument as to ingeniously simple. We might like
to say that Mandel’s ingenious insight into the physics of amplification lead him to a correct answer to the
question raised many years later.
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emitted photon. But still the question is not answered whether this spontaneous
emission definitely rules out a possibility of superluminal signaling.

In order to have a clear answer to this question I present in Section 4 the
optimal universal quantum cloner which introduces the smallest amount of
noise during the cloning procedure and will show you that this cloner cannot
be utilized for the FLASH.

Concluding this section I note that the recent proposal for experimental real-
ization of the universal cloning machine presented by Simon et al. [54, 55], as
well as an experimental demonstration of the quantum cloning machine due to
Lamas-Linares et al. [56] and De Martini ez al. [57, 58], share the basic features
of the original Mandel’s idea. I will describe in a more detail in Section 8 the
experiment by De Martini et al. [59] in which universal NOT gate and quantum
cloning has been realized.

4. Universal Quantum Cloners

Within classical physics we can imagine “machines” which take as an input
a classical physical object in a state which corresponds to a classical informa-
tion encoded in the system and perform an arbitrary operation prescribed by a
specific map (transformation). After the transformation the output is obtained
which corresponds to a result of a classical information processing. The fidelity
fidelity of such a process in classical physics for an arbitrary unknown input
can in principle always be equal to unity.

Quantum mechanics offers new perspectives in information processing [84],
which in part is due to the fact, that quantum information can be represented
by qubits which are two-level quantum systems with one level labeled |0) and
the other |1). Qubits can not only be in one of the two levels, but in any
superposition of them as well. This fact makes the properties of quantum
information quite different from those of its classical counterpart. A typical
example is the quantum cloner.

The impossibility of copying (cloning) quantum information puts funda-
mental limits on amount of information extractable from finite ensembles of
identically prepared quantum systems [42]. Or vice versa, since finite ensem-
bles do not allow for a complete determination of states [73,74,85-89], unknown
quantum states cannot be copied perfectly.

So let us assume quantum machines which take as an input a qubit in an un-
known state and generate at the output qubits in a state according to a specific
prescription, e.g. one would like to have copies of the original. Important fea-
ture of the quantum cloning cloning machine is that it generates an output with
the fidelity fidelity which does not depend on the input. Obviously, if the input
state is known (i.e. complete classical information about the preparation of the
given state is available) then an arbitrary transformation can be performed with
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the fidelity fidelity equal to unity. If the state is unknown then the transforma-
tion cannot be performed perfectly. In this case it is desirable that all states are
transformed equally well (with the fidelity independent on a particular input
state). This covariance covariance property of quantum machines with respect
to unitary transformations of inputs makes the machines universal.

4.1 Quantum cloning 1 — 2

Let H = C?2 denote a two-dimensional Hilbert space of a single qubit. The
action of the cloning machine is equivalent to a a completely positive trace
preserving map T : H — ‘H The machine is design so, that for any pure one-
particle state p at the input, the output 7 (p) is as close as possible to an input
state.

In order to derive the cloning transformation 7 we have to specify the con-
straints which have to be met:

(i)The state of the original system and its quantum copy at the output of the

quantum copier, described by density operators p&™* and p,()out), respectively,

are identical, i.e.,
gwt) — p(()O’ut). (14)

(ii) If no a priori information about the in-state of the original system is avail-
able, then it is reasonable to require that all pure states should be copied equally

well. One way to implement this assumption is to design a quantum copier such

that the distances between density operators of each system at the output (p:(cout)

where 2 = @, b) and the ideal density operator p(*¥) which describes the in-state
of the original mode are input-state independent. Quantitatively this means that
if we employ a fidelity fidelity

F = Tr [,,(out) p(id)] (15)

as a measure of distance between two operators, then the quantum copier should
be such that " = const for all possible input states.

(iti) Finally, we would also like to require that the copies are as close as possi-
ble to the ideal output state, which is, of course, just the input state. This means
that we want our quantum copying transformation to minimize the distance
between the output state p{™*" of the copied qubit and the ideal state p{*®. The
distance 1s minimized, that is the fidelity fidelity F is maximized, with respect
to all possible unitary transformations U acting on the Hilbert space H of two

qubits and the quantum copying machine (i.e., H = H, ® Hp ® H,)
F(ple); p) = max { F (o), pli v} (16)

where x = a, b.
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It has been shown recently [39] that in the case of 1 — 2 cloning the ma-
chine can be represented as a third qubit ¢ via which the information from a
is transfered to the qubit b. The cloning cloning transformation itself can be
expressed in a covariant form as

[BalEe — /2baltdlite — It Bwld)e  AT)

where {1y, ¥} ab = ([¥)al ) + |91 )al¥)s)/ V2 is 2 symmetrically entan-
gled state of the two qubits which are in the states |1} and |¢1), respectively.
The copy and the cloner qubits at the input are always prepared in the state |=);,
which I do not specify here. The two qubits a and b at the output of this cloner
are both in the same state

plovt) = %p + %1; z=a,b. (18)
The scaling factor s = 2/3 corresponds to the fidelity fidelity of the cloning
equal to F = 5/6 which is much higher than the fidelity fidelity of estimation
of the state which is equal to F = 2/3 (for more details see Section 8).

There exists a simple logical network [41] which realizes the transformation
(17). This network is composed of four control-NOT gates via which the
information from the original qubit is transfered to the qubit b. It is interesting
to note that depending on a specific preparation of the qubits b and ¢ we can
control the flow of information in the network: we can even swap the roles of
the output qubits or perform an asymmetric cloning, etc. The proof has been
presented by Gisin and Massar [42], BruB} et al. [43], and Werner [46], that the
transformation (17) is indeed optimal, in a sense that it generates best clones
under the constrains (14)-(16).

4.2 Quantum cloning N - N + M

Let us now suppose that we have N qubits all prepared in the same state 1)
at the input of the cloner, but we want to generate N + M clones at the output
under the same conditions as discussed above.

In order to perform N — N + M cloning we need M “blank” qubits (we
label them with the subscript &) and M additional qubits which play the role
of the cloner (c) and are used for the transfer of information. These 2M qubits
are alway prepared in the same state |=)s.. The universal optimal cloning
transformation for every vector 1) € H can be expressed as [42, 45]

M
UnmIN$)a ® [E)se = D ¥ M 1E(0))as @ [{(M — j)g*; %)) (19)
7=0
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with

A0 1)J(N+M )1/2(N+M+1)*1/2 0)
N M ’

where | Nv¢), = |1)®Y is the input state consisting of IV qubits in the same state

|v). On the right hand side of Eq.(19) |{(M — j)¥; ji}). denotes symmetric

and normalized states with (M — j) qubits in the complemented (orthogonal)

state |1)*) and j qubits in the original state [). Similarly, the vectors |Z;(v))as

consist of N + M qubits, and are given explicitly by

25 (¥))ab = [{(N 4+ M = 5)9; 59" Hab. 3}

Let us note that with this choice of the coefficients 'y(-M’N), the scalar product
of the right hand side with a similar vector, with v replaced by ¢, becomes
(1, ¢)V. This is consistent with the unitarity of the operator U ;.

The N + M qubits in the systems a and b at the output of the gate are
individually in the state described by the density operator

1—
P =spt—=1,  j=1.. ,N+M, (22)

with the scaling factor

N 2N
ARG} (23)

i.e. these qubits are the clones of the original state with a fidelity fidelity of
cloning larger than the fidelity of estimation (see Sec. 6). This fidelity depends
on the number, M, of clones produced out of the N originals, and in the limit
M — oo the fidelity of cloning becomes equal to the fidelity of estimation.
These qubits represent the output of the optimal N — N + M cloner introduced
by Gisin and Massar [42].

So this is the optimal universal quantum cloning process [42, 46] which
18 possible within the linear quantum mechanics. Now we have to answer
the question whether the minimal noise represented by the term é-g»ﬁl in the
expression for a single-qubit density operators at the out-put of the cloner, is
enough to preserve the no-signaling condition.

5. No-signaling & Linearity of Quantum Mechanics

In this section I will show how the no-signaling condition determines bounds
on possible dynamics of a physical system [65]. Before I proceeding I want
to note that there is a long-standing discussion on the relation between the no-
signaling constraint and the linearity of quantum mechanics [65-71].In what
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follows I will not study subtle details of this relation (I refer those who are
interested in the details of the problem to Ref. [71]). The only argument from
all these discussions I am going to use for the present purpose is that I will
associate the no-signaling condition with the linearity of quantum mechanics. I
will adopt the usual quantum kinematics. The possible states of the system are
described by one-dimensional projectors Py, = |#) (3| in a Hilbert space. The
projectors in this Hilbert space are the measurable physical quantities (taking
only values 0 and 1).

The time evolution of the system is described by a map G on the set of pure
states:

Consequently, a mixture { Py, , z;} of states P, with weights z; evolves into a
mixture of states G( Py, ) with the same weights x;. Therefore the corresponding
density operators evolve as follows:

Z aziPu,i — Z Ll:z'g(Pqpi) (25)
i i
Now consider two mixtures { Py,, x;} and { Py, y;} such that
> @miPy = y;iPy = po, (26)
i j
1.e., they correspond to the same density operator. Assume that
> mG(Py,) # > yiG(Py,), (27)
1 J

then the two mixtures can be distinguished after a finite time.

But, as shown in Ref. [65] and as I will show below, any two mixtures
corresponding to the same density operator can be (instantaneously) prepared
at a distance making use of an appropriate entangled state. entangled states
As stated above, I assume the usual quantum kinematics, which in particular
implies existence of entangled states. The assumption (27) thus contradicts the
requirement that there should be no superluminal communication.

Under the assumption that relativity is correct, this implies that the time
development of the system can only depend on the initial density matrix density
matrix pg (and not on the specific mixture):

G :po— G(po) (28)

where

G(po) = Q(Z i Py,) = Z_ z:G(Py,) (29)
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for every mixture having a density operator pyg.

Let us notice that the assumption (27) would mean that the density operator
formalism is not appropriate for determining the time evolution of mixtures,
but it could remain useful for the computation of expectation values of observ-
ables. That any two mixtures corresponding to the same density operator can
be prepared at a distance can be shown as follows: The equation (29) is based
on two facts: (1) the time evolution depends only on the density operator; (2)
the time evolution doesn’t mix composite states of the mixture.

S.1 Bloch vectors and no-signaling

Let us consider a process in which a single particle input state is mapped into
a two particle output state. The input state can be represented as

. 1
™ () = g+ - 3) = [m)(m, (30)

where 7 is a real vector whose length is less than or equal to unity. The most
general two-particle output state, which is hermitian and has a trace equal to
one, can be expressed in the basis of matrices {1®1, 1® 0y, 0;:®1, 0; ® o }
as

1
plZ () = X+ FR1+107-F
+ Z tiko; ® o), €2
j,k=$,y»z

where 71, 72, and ¢;; are functions of 1. The requirement that the reduced
density matrices of the two output particles be the same, which I shall impose,
implies that 7; = 7.

Let us now impose the requirement of covariance. covariance This means
that if pS™ (1) is mapped onto pg‘;ut)(?ﬁ), and if U is a matrix in SU(2),
then the input state U p{™ (17)U~1 will be mapped onto the output state U
U pg‘;“t) (m)U~! @ U1, Another way of stating this condition is obtained by
noting that if we express U as

U = exp(—ife-G/2), (32)
where €'is a unit vector corresponding to the rotation axis and @ is the rotation
angle, then

Um -8\ Ut=m-37, (33)
where m' = R(€&, 6)m. The rotation matrix, R(€, 6), is the 3 X 3 matrix which
rotates a vector about the axis € by an angle 6, and it is given explicitly by

R(€,6) = exp(b€ - K), (34)
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where
0 0 O
Ky,=|1 00 -1},
01 O
0 0 1
K,=( 0o 00}, (35)
-1 0 0
0 -1 0
K, = 1 00
0 0 O
We have that
Upim(m)U = = plim™(Ri), (36)

which will be mapped onto p( ut) (Rm), so that the covariance covariance con-
dition can now be expressed as

pS (Rim) = U @ UpS () U1 @ UL, (37)

Now let us examine the consequences of this relation: Let us first consider
the terms linear in & and let R be a rotation about 17 by a very small angle 6.
We have that

(Rm) = Rij(m), (38)
which for our choice of rotation becomes
(1) = (1 + i - K)ify (17), (39)
or
Ex - Kmi(m) =0, (40)

where €y, is a unit vector in the direction of 17:. This implies that €,z x 77; (7m) =
0, so that 71 (1) is parallel to »7i, and we can write 71 (/) = 71 () m. If we
now substitute this result back into Eq. (38) and consider a general rotation R,
we have that

m(Rm) = n1 (). (41)

This implies that 77 (772) is a constant, which we shall denote by ;. Analogous
arguments lead to a conclusion that 75 = 75 M.
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Now let us see what covariance covariance implies about the terms quadratic
in &. Application of the covariance condition, Eq. (37), to these terms gives

ti(Ri) = > Rjj Riwtn (). (42)
ik

If we again choose R to be a rotation about i by a small angle &, we find the
condition

0= (&n K)jjrtyn(ii) + Z K)ot (7). (43)
j/

Since we consider universal machines we can assume without a loss of gen-
erality, that 77 be in the z direction, in particular, 77 = €,. In this case we find
that £, = tyy, toy = —tye, and t;, = t,; = t, = t,, = 0, where all of these
are evaluated at /m = €,. We now want to impose the no signaling condition

(&) + o5 (—8) = pl ) + 50 (-8), @)

and to do so we need to find all of the density matrixes in the above equation

in terms of t;(€). This can be done by applying the covariance covariance

condition, Eq. (37), to p((’“t (€,) and making the proper choice of R. When

these results are substituted into Eq. (44) we find that t;;(€;) = t,y(€;) =
t.2(€), and I shall designate this common value by ¢. We then can rewrite the
general expression for the two-qubit density operator satisfying the covariance
covariance condition (37) as (here we again use the general orientation of the
vector m)

(L1QL+mMmo @1 +ml @MI+1t0QF + tgym[d x 7))
(45)

pa,b( )

»b-lb—‘

where 71, m2,t,tz, are real parameters. In order for p(r7i) to be a physical
density matrix, density matrix its eigenvalues have to be non-negative. A simple
calculation shows that this implies constraints

L+t+(m+n)
0

1 —ti\/4t2+4t2 + (m —12)?

(46)

In what follows I will apply the no-signaling constraint (46) to the universal
quantum cloners of Section (4).
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5.2 Bounds on cloning due to signaling

In the case of the 1 — 2 cloning, cloning the task is to optimize the fidelity
fidelity F = Tr[p{7* (1)oS™ @ 1] = Tr[p?" () Py ® 1), where Py, =
| + 711) (+172|, assuming 11 = 2 = 7. A simple solution of Eqgs. (46) then leads
to the optimal values t,, = 0,¢ = 1/3,n = 2/3, for which F = %, which
corresponds to a single-qubit density operator at the output given by Eq. (18).
Note that this also optimizes the fidelity describing generation of two clones,

ie. 'I&‘[p((lzm)(fﬁ) P ® Pz} = 2 These are exactly the bounds that are valid
in quantum mechanics as discussed in Section 4 and analyzed by Werner [46].
Therefore I can conclude that the optimal universal quantum cloning one cannot
violate the no-signaling constraint. It is exactly the noise [represented by the
term 1/6 in Eq. (18)] induced by cloning procedure which prevents the FLASH
to transmit signals superluminally.

One may wonder whether there still might be a possibility, that generating
more than two clones out of an incoming qubit one would be able to operate
the FLASH. In order to rule out this possibility one can check that the bound
on 1 — 1+ M cloning imposed by the no-signaling (linearity) constraint is
satisfied by the optimal universal cloners.

6. Cloning, Signaling & POVM

To understand the connection between the optimal universal cloning and
the no-signaling constraint let us turn our attention to a problem of optimal
estimation of states of quantum systems. Let us consider a finite ensemble of
N qubits all prepared in the same pure state |1). If the state is totally unknown,
i.e. we have no a priori information about its preparation, then we have to
assume that all pure state are equally probable. This corresponds to a uniform
probability distribution on a state space of a given system, i.e. in the case of
qubits - the Bloch sphere (see Fig. 1).

Itis well known [73, 74, 85, 86, 87, 88] (for a review see Ref. [89]) that there
exists an optimal measurement of the finite set of N qubits via which the best
possible estimation of the state |1) can be performed. Holevo [73] has shown
that it is possible to realize the best estimation via the so-called covariant
measurement, which is a continuous POVM measurement performed on the
whole finite ensemble. Obviously, in this case the problem is, that physically it
is difficult to perform experimentally a measurement with a continuous number
of observables. Later it has been shown by Massar and Popescu [85] and Derka
et al. [86], that the optimal measurement on a finite ensemble of qubits can be
realized via a finite-dimensional POVM. Such POVM can be realized when we
imagine projective measurements performed on the whole set of N qubits (that
is the qubits are not measured sequentially, but simultaneously, in one “shot”).
Once this optimal measurement is performed then the best possible estimation
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Figure 1. The state space of a qubit is a Bloch sphere. Pure states |¢) are represented by
points on the sphere, while statistical mixtures are points inside the sphere. The state [th ") that
is orthogonal to 1) is its antipode.

of the measured state can be expressed in a form of the density operator

]. -_—
ﬂ{ﬁ.qt_] = snp+ ‘ZHN 1, (47)
where the “scaling” factor sy is given by the expression
h‘f
SN = ——, 48
N N i
and is directly related to the mean fidelity
F f dQ, ("), (49)

where the integration is performed over all input states pand df2,, = sin ddd dip/An
is the integration measure associated with the state space , i.e. the Bloch sphere.
When we insert pl**) given by Eq.(47) into Eq.(49) we find
1 — a8y B N +1

2  N+2
There does not exist a measurement which would give us more information than
the one POVM just considered (for more details see the review article [89]).

? = 8N + {Sﬂ]
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6.0.1 Single qubit case.  In the case of a single qubita simple projective
measurement is the most optimal one. Specifically, the optimal way to estimate
the state, is to measure it along a randomly (we have no prior knowledge about
the state) chosen direction in the two-dimensional Hilbert space[73, 85, 86]. So
let us choose a random vector |n), where

Iy = cos(¥'/2)|0) + & sin(x¥’ /2)|1), (51)

and measure |y) along it. If the result is positive, then the output is taken to be
|n), and if negative, the output is |*). This would also correspond to our best
estimation of the input state given the result of the measurement.

To evaluate the fidelity fidelity of the estimation T present a statistical picture
of the measurement. Firstly, let us average over all possible orientations of
the measurement apparatus. In order to do so let us write down a single-qubit
density operator

P2 (m) = {2 In) (] + | (Bl ) 2 [t (n] - (52)

which describes statistics of the measurements for a given orientation of the
measurement apparatus. To get the final output density matrix density matrix
we average (52) over all possible choices of the measurement (i.e. over all
vectors |n7))

p(est) =/dan(meas)(n). (53)

where d Q0 = L sin®/dd’ dy’ is the integration measure on the state space of
the “measurement” apparatus. After the integration is performed we find

1—3s
2

where for a single input qubit we have s = 1/3 and p = [¢) (4.
In order to find the mean fidelity fidelity of the estimation itself we have to
average the fidelity, i.e. (1|p(®*t)|¢)) over all possible preparations, i.c.

plest) = sp 1, (54)

7= [anwlpe ) = 2 (55)

Obviously, instead of the projective measurement one can consider some
other optimal generalized measurement to be performed on the input qubit.
We can even consider a continuous POVM. Nevertheless, since in the given
case the projective measurement, described above, is the optimal one, no other
measurement can give us more information about the input state [1).

Now it is clear that the quantum cloning cloning can be represented as a
specific generalized POVM measurement. It is a particular physical realization
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of the Naimark theorem [73] - the information contained in the original qubit
(i.e. the state |1/)) is spread in between many clones. But when the optimal
measurement on these clones is performed [44] the mean fidelity fidelity of the
estimation is again equal to 2/3. In other words we cannot generate information
via cloning and therefore we cannot violate the no-signaling constraint. This is
the reason why the FLASH does not work. The argument can be generalized
when the optimal N — N + M cloning cloning is considered [42, 46] Informa-
tion about the input qubit(s) cannot be “generated”. It only can be redistributed
[94]. This is in perfect accordance with the no-signaling constraint.

7. Flipping Qubits: Universal NOT Gate

As follows from our previous discussion, quantum cloning can be considered
as a form of a redistribution of quantum information from a set of incoming
qubits to a large set of output qubits. In the cloning the main task has been
to generate a copy (copies) of the original input qubit which are as close as
possible to the input. But we can also assume other tasks, such as spin-flipping
of unknown qubits.

One of the most striking difference between the classical and quantum infor-
mation is as follows: it is not a problem to flip a classical bit, i.e. to change the
value of a bit, a 0 to a 1 and vice versa. This is accomplished by a NOT gate.
Flipping a qubit, however, is another matter: there exists the fundamental bound
which prohibits to flip a qubit prepared in an arbitrary state |¢p) = «|0) + 5]0)
and to obtain the state [1)1) = 3*|0) — o*|1) which is orthogonal to it, i.e.
(W) = 0.

Let us assume the Bloch sphere which represents a state space of a qubit.
The points corresponding to |1) and |i/1) are antipodes of each other. The
desired spin-flip operation is therefore the inversion of the Bloch sphere (se¢
Fig. 1).

It is well known that this inversion preserves angles (which is related to
the scalar product |(¢, )| of rays). Therefore, by the arguments of the Wigner
theorem the ideal spin-flip operation must be implemented either by a unitary or
by an anti-unitary operation. Unitary operations correspond to proper rotations
of the Bloch sphere, whereas anti-unitary operations correspond to orthogonal
transformations with determinant — 1. The spin-flip is an anti-unitary operation,
i.e. it is not completely positive.

Due to the fact that the tensor product of an anti-linear and a linear operator
is not correctly defined the spin-flip operation cannot be applied to a qubit while
the rest of the world is governed by unitary evolution. On the other hand if we
consider a spin-flip operation we should have in mind a universal NOT gate
flipping an input qubit to its orthogonal state. The gate itself is an operation
applied to the qubit, that is just a subsystem of a “whole universe”. Therefore it
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must be represented a completely positive operation. It is well known that any
completely positive operation on a qubit can be realized by a unitary operation
“ performed on the qubit and the ancillary system. Following this arguments we
see that the ideal universal NOT gate which would flip a qubit in an arbitrary
state does not exist.

Obviously, if the state of the qubit is known, then we can always perform
a flip operation. In this situation the classical and quantum operations share
many similar features, since the knowledge of the state is a classical informa-
tion, which can be manipulated according to the rules of classical information
processing (e.g. known states can be copied, flipped etc). But, the universality
of the operation is lost. That is, the gate which would flip the state [0) — |1),
is not able to perform a flip |(0) + [1))/v2 — (|0} —- |1))/V2.

Since it is not possible realize a perfect Universal-NOT gate which would flip
an arbitrary qubit state, it is of interest to study, what is the best approximation to
the perfect Universal-NOT gate. Here one can consider two possible scenarios.
The first one is based on the measurement of input qubit(s) — using the results
of an optimal measurement one can manufacture an orthogonal qubit, or any
desired number of them. Obviously, the fidelity fidelity of the NOT operation
in this case is equal to the fidelity of estimation of the state of the input qubit(s).
The second scenario would be to approximate an anti-unitary transformation
on a Hilbert space of the input qubit(s) by a unitary transformation on a larger
Hilbert space which describes the input qubit(s) and ancillas.

It has been shown recently, that the best achievable fidelity fidelity of both
flipping scenarios is the same [90, 91, 92, 93]. That is, the fidelity of the
optimal Universal NOT gate is equal to the fidelity of the best state-estimation
performed on input qubits [73, 85, 86] (one might say, that in order to flip a qubit
we have to transform it into a bit). In what follows I briefly describe the unitary
transformation realizing the quantum scenario for the spin-flip operation, that is,
I present the optimal Universal NOT gate. Then I describe the recent experiment
by De Martini ef al. (see Ref. [59]) in which qubits encoded in polarization
states of photons have been flipped.

7.1 Theoretical description of spin flipping

Let H = C? denote the two-dimensional Hilbert space of a single qubit Then
the input state of N systems prepared in the pure state [1)) is the N-fold tensor
product |)®N € H®N. The corresponding density matrix density matrix is
o = p®", where p = 1)) (/| is the one-particle density matrix. An important
observation is that the vectors [1)®% are invariant under permutations of all N
sites, 1.., they belong to the symmetric, or “Bose”-subspace H%N C H®N,
Thus as long as we consider only pure input states we can assume all the input
states of the device under consideration to be density operators on ’H?N . ITwill
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denote by S(H) the density operators over a Hilbert space H. Then the U-NOT
gate must be a completely positive trace preserving map 7' : S ('H?N ) —

S(H). My aim is to design T in such a way that for any pure one-particle
state p € S(H) the output T(p®") is as close as possible to the orthogonal
qubit state p- = 1 — p. In other words, I am trying to make the fidelity fidelity
F = Tr[p T (p®")] = 1 — A of the optimal complement with the result of the
transformation 7" as close as possible to unity for an arbitrary input state. This

corresponds to the problem of finding the minimal value of the error measure
A(T) defined as

A(T) = max Tr [p T(p®")] . (56)
p,pure

Note that this functional A is completely unbiased with respect to the choice
of input state. More formally, it is invariant with respect to unitary rotations
(basis changes) in H: When T is any admissible map, and U is a unitary on
H, the map Ty (o) = U*T(UPNaU*®N)U is also admissible, and satisfies
A(Ty) = A(T). 1 will show you later on that one may look for optimal
gates T', minimizing A(T’), among the universal ones, i.e., the gates satisfying
Ty = T for all U. For such U-NOT gates, the maximization can be omitted
from the definition (56), because the fidelity Tr [p T'(p®")] is independent of

p.

7.2 Measurement-based scenario

An estimation device (see also previous section) by definition takes an input
state 0 € S (H%N ) and produces, on every single experiment, an “estimated
pure state” p € S(H). As in any quantum measurement this will not always be
the same p, even with the same input state p, but arandom quantity. The estima-
tion device is therefore described completely by the probability distribution of
pure states it produces for every given input. Still simpler, I will characterize it
by the corresponding probability density with respect to the unique normalized
measure on the pure states (denoted “d¢” in integrals), which is also invariant
under unitary rotations. For an input state ¢ € S (’H%N ), the value of this
probability density at the pure state |$) is

p(¢,0) = (N +1)(¢®N, 0 ¢®). (57)

To check the normalization, note that [ d¢p(¢,0) = Tr{Xo] for a suitable
operator X, because the integral depends linearly on 0. By unitary invariance
of the measure “d¢” this operator commutes with all unitaries of the form U N,
and since these operators, restricted to H%N form an irreducible representation
of the unitary group of H [for d = 2, it is just the spin spin N/2 irreducible
representation of SU(2)], the operator X is a multiple of the identity. To deter-
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mine the factor, one inserts o = 1, and uses the normalization of “d¢” to verify
that X = 1.

Note that the density (57) is proportional to | (¢, )|V, whena = |pBN) (y®N|
is the typical input to such a device: NV systems prepared in the same pure state
). In that case the probability density is clearly peaked sharply at states &)
which are equal to [¢)) up to a phase.

Suppose now that we combine the state estimation with the preparation of a
new state, which is some function of the estimated state. The overall result will
then be the integral of the state valued function with respect to the probability
distribution just determined. In the case at hand the desired function is f (¢) =
(1—|¢)(a|). Sothe result of the whole measurement-based (“classical”’) scheme
is

o) = T(0) = [ o p(o.0) (1~ I6)(0]). (58)

The fidelity fidelity required for the computation of A from Eq.(56) is then
equal to (see also [85, 86])

A=(N+1) f dg (6, ¥) PN (1 — (6, 9)2) (59)

1

- N+2
where I have used that the two integrals have exactly the same form (differing
only in the choice of V), and that the first integral is just the normalization inte-
gral. Since this expression does not depend on p, we can drop the maximization
in the definition (56) of A, and find A(T') = 1/(N + 2), from which we find
that the fidelity fidelity of creation of a complement to the original state p is

_N+1

= NI (60)

Finally I note, that the result of the operation (58) can be expressed in the form

1-s

N
1
5 L (61)

p(out) — SNpJ_ +

with the “scaling” parameter s, = 7\7’% From here it is seen that in the limit
N — oo, perfect estimation of the input state can be performed, and, conse-
quently, the perfect complement can be generated. For finite NV the mean fidelity
fidelity is always smaller than unity. The advantage of the measurement-based
scenario is that once the input qubit(s) is measured and its state is estimated
an arbitrary number M of identical (approximately) complemented qubits can
be produced with the same fidelity, simply by replacing the output function

f(8) = (1 - |6)(a]) by far(9) = (1 — |¢)(8])®M.
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7.3 Quantum scenario

In follows I will present a transformation which produces complements
whose fidelity is the same as those produced by the measurement-based method.
Assume we have [V input qubits in an unknown state |1) and we are looking for
a transformation which generates M qubits at the output in a state as close as
possible to the orthogonal state |1)+). The universality of the proposed trans-
formation has to guarantee that all input states are complemented with the same
fidelity. If we want to generate M approximately complemented qubits at the
output, the U-NOT gate has to be represented by 2M qubits (irrespective of
the number, NV, of input qubits), M of which serve as ancilla, and M of which
become the output complements. Let us denote these subsystems by subscripts
“a’=input, “b”=ancilla, and “c”=(prospective) output. The U-NOT gate trans-
formation, Up pyz, acts on the tensor product of all three systems. The gate is
always prepared in some state |=)p, independently of the input state |1) S,
Interestingly enough the optimal U-NOT gate is realized by the same transfor-
mation as the quantum cloning. cloning That is, the U-NOT is described by
Eq. (19).

Each of the M qubits under consideration at the output of the U-NOT gate
is described by the density operator (61) with s, = NJ%, irrespective of the
number of complements produced. The fidelity fidelity of the U-NOT gate
depends only on the number of inputs. This means that this U-NOT gate can be
thought of as producing an approximate complement and then cloning it, with
the quality of the cloning independent of the number of clones produced. The
universality of the transformation is directly seen from the “scaled” form of the
output operator (61).

Let us stress that the fidelity of the U-NOT gate (19) is exactly the same as

in the measurement-based scenario. Moreover, it also behaves as a classical
(measurement-based) gate in a sense that it can generate an arbitrary number of
complements with the same fidelity. In fact, the transformation (19) represents
the optimal U-NOT gate via quantum scenario. That is, the measurement-based
and the quantum scenarios realize the U-NOT gate with the same fidelity. In
Appendix A I will present a proof of the following theorem:
Theorem 1. Let H be a Hilbert space of dimension d = 2. Then among
all completely positive trace preserving maps T : S (’H%N ) — S(H), the
measurement-based U-NOT scenario (58) attains the smallest possible value
of the error measure defined by Eq.(56), namely A(T) = 1/(N + 2).

I conclude this section by saying that in the quantum world governed by
unitary operations anti-unitary operations can be performed with the fidelity
which is bounded by the amount of classical information potentially available
about states of quantum systems.
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8. Experimental Realization of U-NOT Gate

In what follows I will describe the experiment by DeMartini et al. [59]
in which a flipping of a single qubit has been realized. In this case of Just
single input qubit, the flipping transformation reads exactly the same as the
cloning cloning transformation (17) To be specific this transformation describes
a process when the original qubit is encoded in the system a while the flipped
qubit is in the system c. The density operator describing the state of the system
¢ at the output is

(out)_l 1 un _:!'_
) = 2wt + 51, (62)

and the fidelity of the spin flipping is F = 2/3.

A natural way to encode a qubit into a physical system is to utilize polarization
polarization states of a single photon. In this case the Universal NOT gate canbe
realized via the stimulated emission. The key idea of DeMartini’s experiment
is based on the proposal that universal quantum machines [40] such as quantum
cloner can be realized with the help of stimulated emission in parametric down
conversion [82, 54, 56]. Specifically let us consider a'qubit to be encoded
in a polarization state of a photon. This photon is injected as the input state
into an optical parametric amplifier amplifier (OPA) physically consisting of a
nonlinear (NL) BBO (3-barium-borate) crystal cut for Type II phase matching
and excited by a pulsed mode-locked ultraviolet laser laser UV having pulse
duration 7 ~ 140 f sec and wavelength (wl) Ap = 397.5mm associated to pulse
duration. The relevant modes of the NL 3-wave interaction were the spatial
modes with wave-vector (wv) kjand ks each supporting the two horizontal
(H) and vertical (V') linear-polarizations ((IT) of the interacting photons, e.g.
II1 g is the horizontal polarization unit vector associated with k1. The OPA
was frequency degenerate, i.e. the interacting photons had the same wl’s A =
795nm. The action of OPA under suitable conditions can be described by a
simplified Hamiltonian

Hins = & (&Lf{bl ~ aj;j)f/,) +hec. (63)

A property of the device, of key importance in the context of the present work,
is its amplifying behavior with respect to the polarization IT of the interacting
photons. It has been shown theoretically in Ref. [54] and in a recent experiment
on universal quantum cloning [56, 59] that the amplification efficiency of this
type of OPA under injection by any externally injected quantum field, e.g.
consisting of a single photon or of a classical “coherent” field, can be made
independent of the polarization state of the field. In other word the OPA “gain”
is independent of any ( unknown) polarization state of the injected field: This
precisely represents the necessary universality (U) property of the U-NOT
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gate. For this reason in Eq. (63) we have denoted the creation d:&} (BL) and

annihilation @, (i’zb) operators of a photon in mode k; (k2) with subscripts
(or 1) indication the invariance of the process with respect to polarization
states of the input photon.

Let us consider the input photon in the mode k; to have a polarization 1. 1
will describe this polarization state as 4,,|0, 0)x, = |1, 0)x,, where I have used
notation introduced by Simon et al. [54], i.e. the state |m,n), represents a
state with m photons of the mode k1 having the polarization 1, while n photons
have the polarization 1. Initially there are no excitations in the mode ko. The
initial polarization state of these two modes reads |1,0);, ® |0,0)4, and it
evolves according the Hamiltonian Hamiltonian (63):

eXp(—iﬁintt)ll,())kl ® |070>k2 = 1110>k1 & |0a0)k2
— int (V212,000 ®10, Dk, ~ |1, 1), 11,0, ) (64)

This approximation for the state vector describing the two modes at times ¢ > 0
is sufficient since the values x¢ are usually very small (see below). The zero
order term corresponds to the process when the input photon in the mode k;
did not interact in the nonlinear medium, while the second term describes the
first order process in the OPA. This second term is formally equal (up to a
normalization factor) to the right-hand side of Eq. (17). Here the state |2, 0),
describing two photons of the mode &, in the polarization state 3 corresponds
to the state |+)). This state-vector describes the cloning cloning of the original
photon [54, 56]. The vector |0, 1);_» describes the state of the mode &, with a
single photon in with the polarization 1--. That is, this state vector represents
the flipped version of the input.

To see that the stimulated emission is indeed responsible for creation of the
flipped qubit, let us compare the state (64) with the output of the OPA when the
vacuum is injected into the nonlinear crystal. In this case, to the same order of
approximation as above we obtain

exp(—iﬁinttﬂoa 0)k, © 10,0}k, 210,00k, ® [0,0),

il{’t(|170>kl ® |0’ 1)k2 - |0, 1>k1 ® ’170>k2) (65)

We see that the flipped qubit described by the state vector |0, 1), in the right-
hand sides of Eqs.(64) and (65) does appear with different amplitudes corre-
sponding to the ratio of probabilities to be equal to 1 : 2. This ratio has been
measured in the experiment [59].
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Figure 2. Schematic description of the experimental verification of the universality of the flip
operation. A coherent state coherent state of attenuated laser laser field with wl A = 795nm
has been used in the experiment. The source is Ti:Sa Coherent MIRA pulsed laser providing
by Second Harmonic Generation Second harmonic generation(SHG) the OPA “pump” ficld
associated with the spatial mode with wv ky, and wl Ay, A small portion of the laser radiation at wl
A was directed along the OPA injection mode ;. The purametric amplification, with calculated
“gain” g = (.31, was detected at the OPA output mode k) by D, a Si linear photodiode SGID100.
The time superposition in the NL crystal of the “pump” and of the “injection” pulses was assured
by micrometric displacements (Z) of a 2-mirror optical “trombone”, Various I1—states of the
injected pulse were prepared by the set (W Pt 4 Q) consisting of a Wave-plate (cither A /2 or
A/4) and of a 43mm X-cut Quartz plate. These states were then analyzed after amplification
and before detection on mode k2 by an analogous optical set (W Py + @ + Il—analyzer),
the last device being provided by the Polarizing Beam Splitter PBS.. In the experiment all the
4.5mm thick X-cut quartz plates () ) provided the compensation of the unwanted beam walk-off
effects due to the birefringence of the NL crystal.

8.1 Universality

On the “microscopic™ quantum level the justification of this U-property of
the OPA amplifier amplifier resides in the SU(2) rotational invariance of the NL
interaction Hamiltonian Hamiltonian when the spatial orientation of the OPA
NL Type IT crystal makes it available for the generation of 2-photon entangled
“singlet” states by Spontaneous Parametric Down Conversion (SPDC), i.e. by
injection of the “vacuum field” [54]. However I should note that in the present
context the universality property, i.e. the I1—insensitivity of the parametric
amplification “gain” g, is a “macroscopic” classical feature of the OPA device.
As a consequence, it can be tested equally well either by injection of “clas-
sical”, e.g. coherent (Glauber) fields or of a “quantum” states of radiation,
e.g. a single-photon Fock-state. De Martini er al. [59] carried outl success-
fully both tests, leading to identical results. Below I describe the experiment
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Figure 3. Experimental verification of the universality of OPA. The plots show the amplifi-
cation pulses detected by [y on the OPA output mode, k3. Each plot corresponds to a definite
[T—state, |y) = [cos(d/2) | H) + exp(ig) sin(¥/2) |V}, either linear — T, ie. ¥ = 0, /2,
T @ = 0,0r circular—I1,1e. 9 = n/2, ¢ = £ /2, or elliptical — II, in the very general
case: ¥ = 5w/18; ¢ = —m /2.

corresponding to the injection by attenuated “coherent” laser laser field — see
Fig. 2

The universality condition is demonstrated by the plots in Fig. 3 showing the
amplification pulses detected by IJ; on the OPA output mode, k2. Each plot
corresponds to a definite [1—state, |¢) = [cos(d/2) |H) + exp(i¢) sin(9/2)
[V)], either linear — 11, ie. ¥ = 0, w2, m ¢ = 0, or circular—TI, i.e.
U =m/2 ¢ = £ /2, orelliptical — I1, in the very general case: ¥ = 5 /18;
¢ = —m/2. We may check that the corresponding amplification curves, each
corresponding to a standard injection pulse; with an average photon number
N = 5 x 10° are almost identical. For more generality, the universality
condition as well as the insensitivity of this condition to the value of N is also
demonstrated by the single experimental data reported, with different scales, at
the top of each amplification plot and corresponding to injection pulses with:
N = 5 x 10%. Single-photon tests of the same conditions were also carried out
with a different experimental setup, as said.

82  Optimality

Let us move to the main subject of the experiment under consideration,
i.e. the quantum U-NOT gate. In virtue of the tested universality of the OPA
amplification, it is of course sufficient to consider here the OPA injection by
a single-photon in just one I1—state, for instance in the vertical — II state.
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Figure 4. Experimental realization of the quantum U-NOT gate. Consider the k, pump
mode, i.e., the “towards R™ excitation. A SPDC process created single photon-pairs with wl
A = T9%nm in emangled singler [1 — states, i.e. rotationally invariant, as said, One photon
of each pair, emitted over k; was reflected by a spherical mirror M onto the NL crystal where
it provided the N = | quantum infection into the OPA amplifier amplifier excited by the UV
“pump” beam associated to the back reflected mode —k,. In the experiment the flipping of a
single photon in a state [1)) = |V} has been considered. In the experiment, owing to a spherical
mirror M, with 100% reflectivity and micrometrically adjustable position Z, the UV pump
beam excited the same NL OPA crystal amplifier amplifier in both directions k, and —k,. i.e.
correspondingly oniented towards the Right (f2) and Left (1) sides of the figure. Because of
the low intensity of the UV beam, the 2 photon injection probability, N = 2 has been evaluated
to be = 3.5 x 107" smaller that for the N = 1 condition. The twin photon emitted over ks
was Il — selected by the devices (W Py + PBSy) and then detected by Dy, thus providing the
“tngger” of the overall conditional experiment. All detectors in the experiment were equal active
SPCM-AQR 14 with quantum efficiency: QF = 55%. Because of the E'P R non-locality non-
locality implied by the singlet state, the 11 - selection on channel k; provided the realization
on kiof the state [17) = |V} of the injected photon, All the X-cut quartz plates @ provided the
compensation of the unwanted beam walk-off effects due to the birefringence of the NL crystal.
Consider the “towards L amplification, i.e. the amplification process excited by the mode — kp,
and do account in particular for the OPA output mode k;. The I1—state of the field on thut mode
was analyzed by the device combination (W 14+ PBS;) and measured by the detector D3,
The detectors D, Dy, were coupled to the field associated with the mode k. The experiment was
carried out by detecting the rate of the 4-coincidences involving all detectors |15 1020, D).

Accordingly, Fig. 4 shows a layout of the single-photon, N = 1, quantum-
injection experiment with input state [¢/) = |V).

From the analysis presented by Simon et al. [54, 56] it follows that the state
of the field emitted by the OPA indeed realizes the U-NOT gate operation, i.e.
the “optimal” realization of the “‘anti-cloning™ of the original qubit originally
encoded in the mode ky. The flipped qubit at the output is in the mode k. As it
has been shown earlier the state created by the U-NOT gate is not pure. The isa
minimal amount of noise induced by the process of flipping which is inevitable
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Figure 5. Experimental verification of the optimality of the U-NOT gate. The plots show
experimental 4-coincidence data as function of the time superposition of the UV pump and of the
injected single-photon pulses. That superposition was expressed as function of the micrometric
displacement Z of the back-reflecting mirror M. The height of the central peak expresses the
rate measured with the IT — analyzer of mode k; set 1o measure the “correct” horizontal (H)
polarization, i.e. the one orthogonal to the (V) polarization of the TT — state, [) = |V} of the
injected, input single photon, N = 1. By wrning by 90° the Tl — analyzer, the amount of the
“noise” contribution is represented by a “flat” curve. In the experiment the “noise” was provided
by the OPA amplification of the unavoidable “vacuum” state associated with the mode k.

in order to preserve complete-positiveness of the Universal NOT gate. This
mixed state is described by the density operator (62). The polarization state of
the output photon in the mode &3 in the experiment performed by De Martini
etal. [59] is indeed described by this density operator.

The plots of Fig. 5 report the experimental 4-coincidence data as function
of the time superposition of the UV pump and of the injected single-photon
pulses.

The main result of the experiment [59] consists of the determination of the
ratio R* between the height of the central peak and the one of the flat “noise”
contribution. To understand this ratio let us firstly note that the most efficient
stimulation process in the OPA is achieved when a perfect match (overlap)
between the input photon and the photon produced by the source is achieved.
This situation corresponds the value of the mirror position Z equal to zero [see
Eq.(64)]. As soon as the mirror is displaced from the position the two photons
do not overlap properly and the stimulation is less efficient. Correspondingly,
the spin flip operation is more noisy. In the limit of large displacements Z
the spin flipping is totally random due to the fact that the process corresponds
to injecting the vacuum into the crystal [see Eq.(65)]. The theoretical ration
between the corresponding probabilities is 2.In the experiment [59] the ratio has
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been found to be R* = (1.66 £ 0.20). This corresponds to a measured value
of the fidelity fidelity of the U-NOT apparatus: F* = (0.623 £ 0.025) to be
compared with the theoretical value: F' = 2/3 = 0.666. Note that the height
of the central peak does not decrease towards zero for large Z’s. This effect
is due to the finite time-resolution of the 4-coincidence electronic apparatus,
which is in the nanosecond range. It would totally disappear if the resolution
could be pushed into the sub-picosecond range, i.e. of the order of the time
duration of the OPA pump and injection pulses. It can be easily found that the
spurious out of resonance plateau of the central peak should indeed reproduce
the size of the “noise” condition measured on the mode k2. As we can see, this
is indeed verified by the experiment.

9. Conclusion

In these notes I have overviewed two types of universal quantum machines -
universal quantum cloners and the universal NOT gate. In order to motivate my
discussion I have briefly discussed the role of no-signaling condition in quantum
mechanics and I have shown that quantum cloning cannot be used for super-
luminal signaling as originally suggested by Nick Herbert. The main message
of my notes can be summarized as follows: Even though quantum mechanics
does open new perspectives in information processing it also imposses new
bounds on how well we can manipulate with information encoded in quantum
systems. In quantum processes we can redistribute information according to
specific rules, but we cannot generate it (e.g. in a sense that we would be able
to perform better state estimation).
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Appendix: Proof of Theorem I

I have already shown in Section 7 fsee Eq.(59)] that for the measurement-based strategy the
error A attains the value 1/(N + 2). The more difficult part, however, is to show that no other
scheme [i.e., quantum scenario] can do better. In what follows I will largely follow the arguments
in Ref. [50].
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Note first that the functional A is invariant with respect to unitary rotations (basis changes) in
H: When T is any admissible map, and U is a unitary on H, themap Ty (o) = U*T(U®N UMy
i1s also admissible, and satisfies A(Ty) = A(T). Moreover, the functional A is defined as the
maximum of a collection of linear functions in T', and is therefore convex. Putting these obser-
vations together we get

M) < [ av Ay = am), (A1)

where T = [ dU Ty is the average of the rotated operators Ty, with respect to the Haar measure
on the unitary group. Thus T"is at least as good as T', and has the additional “covariance property”
Ty = T. Without loss we can therefore assume from now on that Ty = T for all U.

An advantage of this assumption is that a very explicit general form for such covariant
operations is known by a variant of the Stinespring Dilation Theorem (see [50] for a version
adapted to our needs).

The form of T is further simplified in our case by the fact that both representations involved are
irreducible: the defining representation of SU(2) on H, and the representation by the operators
U®Y restricted to the symmetric subspace ’HEN . Then T can be represented as a discrete convex
combination T' = }~ - A; T, with A; > 0,3 ;A = 1, and T}; admissible and covariant maps
in their own right, but of an even simpler form. Covariance covariance of T already implies
that the maximum can be omitted from the definition (56) of A, because the fidelity no longer
depends on the pure state chosen. In a convex combination of covariant operators we therefore
get

A(T) =) MAT). (A2)

Minimizing this expression is obviously equivalent to minimizing with respect to the discrete
parameter j. _

Let us write the general form of the extremal instruments 7 in terms of expectation values
of the output state for an observable X on H:

T (T(0)X) = Tr[o V' (X ® 1)V], (A3)

where V : H2Y — H ® C¥T! is an isometry intertwining the respective representations
of SU(2), namely the restriction of the operators U®" to ’HfN (which has spin N/2) on the
one hand, and the tensor product of the defining representation (spin-1/2) with the irreducible
spin-j representation. By the triangle inequality for Clebsch-Gordan reduction, this implies
J = (N/2) £ (1/2), so only two terms appear in the decomposition of T. It remains to compute
A(Ty;) for these two values. '

The basic idea is to use the intertwining property of the isometry V for the generators S, Ja,
and La, a = 1,2, 3 of the SU(2)-representations on 1, C**1 and H®V, respectively. We will
show that

V*(Sa ® 1,)V = p; La, (A4)

where p; is some constant depending on the choice of j. That such a constant exists is clear
from the fact that the left hand side of this equation is a vector operator (with components labeled
by a = 1,2, 3), and the only vector operators in an an irreducible representation of SU(2) are
multiples of angular momentum Angular momentum (in this case L, ). The constant W can be
expressed in terms of a 6;-symbol, but can also be calculated in an elementary way by using the
intertwining property, VL, = (So ® 1 + 1 ® J,)V and the fact that the angular momentum
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Angular momentum squares J2 = 3" _ J2 = j(j + 1), S® = 3/4,and L? = N/2(N/2 + 1)
are multiples of the identity in the irreducible representations involved, and can be treated as
scalars:

wL? = Y V' (Sa®1;)VLa

S+ V(Sa®Ja)V. (A.5)

The sum on the right hand side can be obtained as the mixed term of a square, namely as
l(z V(Sa®1+ 16 Jn)2V — 82 —JZ) (A.6)
2 (3
= (L% - S% - J%). (A7)

Combining these equations we find

1 i
N fOT_]—- Nm
1§27 N_+12 forj=Ngz—r.
Mi= 5+ g = :
2 2L
(A.8)

Let us combine equations (A.3) and (A.4) to get the error quantity A from equation (56), with
the pure one-particle density matrix density matrix p = %1 + Sa:

A(T) = Te(V* (p® 1)Vp®Y) = L (1 + Npsy). (A9)

With equation (A.8) we find

(A.10)

The first value is the largest possible fidelity fidelity for getting the state p from a set of N
copies of p. The fidelity 1 is expected for this trivial task, because taking any one of the copies
will do perfectly. On the other hand, the second value is the minimal fidelity, which we were
looking for. This clearly coincides with the value (59), so the Theorem is proved.

The Theorem as it stands concerns the task of producing just one particle in the U-NOT state
of the input. From previous results we see that it is valid also in the case of many outputs. We
see that the maximum fidelity is achieved by the classical process via estimation: in equation
(58) we just have to replace the output state (1 — |¢)(a|) by the desired tensor power. Hence
once again the optimum is achieved by the scheme based on classical estimation. Incidentally,
this shows that the multiple outputs from such a device are completely unentangled, although
they may be correlated.
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