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Abstract
A recently proposed test of quantumness Alicki and Van Ryn (2008 J. Phys.
A: Math. Theor. 41 062001) is put into a broader mathematical and physical
perspective. The notion of quantumness witnesses is introduced, in analogy
to entanglement witnesses, and is illustrated by examples of single qubit and
many-body systems with additive observables. We also compare our proposal
with the quantumness test based on quantum correlations (entanglement) and
Bell inequalities, and go on to discuss a class of quantumness witnesses
associated with the phase-space representation of quantum mechanics.

PACS numbers: 03.65.Ta, 03.67.−a

1. Introduction

One ‘rule of thumb’ of quantum theory is the Bohr correspondence principle, which can be
formulated as follows:

The systems consisting of a large number of particles and/or emerging in quantum
states characterized by large quantum numbers behave classically.

However, the validity of this principle, in particular the range of its application, remains
open. It seems that with improved experimental techniques, the actual border between quantum
and classical worlds has been moved into larger and larger systems [2]. The most daring
challenge to the correspondence principle is the idea of macroscopic quantum systems. For
example, there exists quite convincing evidence that certain macroscopic systems, such as
Josephson junctions (superconducting qubits) [3], Bose–Einstein condensates [4] or Rydberg
atoms [5], preserve fundamental quantum properties. On the other hand, these arguments are
strongly model dependent and do not completely exclude the existence of an approximative

1751-8113/08/495303+14$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/49/495303
mailto:fizra@univ.gda.pl
http://stacks.iop.org/JPhysA/41/495303


J. Phys. A: Math. Theor. 41 (2008) 495303 R Alicki et al

classical description [6, 7]. Therefore, model independent tests of ‘quantumness’ are of
great theoretical and practical importance. This question is particularly relevant to the field
of quantum information and quantum computation. A useful quantum computer should be
a rather macroscopic machine which nevertheless preserves certain fundamental quantum
properties. Moreover, it is believed that some examples of macroscopic quantum systems can
provide promising implementations of quantum information processing.

In the present paper, we develop the ideas introduced in [1] and tested experimentally
for a single-photon polarization in [8]. We discuss tests of quantumness based on certain
fundamental properties of classical probability theory which are not valid in quantum theory.
Mathematically, these tests involve certain specific quantum observables called quantumness
witnesses in analogy to entanglement witnesses [9]. We discuss in detail the case of a single
qubit and then show how the quantumness disappears for many-body systems when we restrict
ourselves to additive observables only. We compare our proposal with the quantumness
test related to quantum correlations (entanglement) and Bell inequalities. We also study
quantumness witnesses which appear in the context of phase-space representation of a quantum
oscillator.

2. States and observables

Assume that our aim is to interpret a given set of experimental data in terms of a mathematical
model which involves the notions of states and observables. Operationally, the state ρ

can be identified with a fixed system’s preparation procedure and the observable A with
some apparatus which produces a set of outcomes {a} ≡{ a1, a2, . . .}. Repeating the given
preparation procedure ρ and the measurement of A many times, we obtain the probability
distribution pa = (p1, p2, . . .) which allows, e.g., to compute all moments of the observable

〈Ak〉ρ =
∑

j

pja
k
j , k = 0, 1, 2, . . . . (1)

Therefore, a single apparatus corresponds not to a single observable but rather to the whole
family of functions F(A) of A which differ by a choice of a ‘pointer scale’ only.

2.1. C∗-algebraic model

We now need a mathematical model of states and observables. For simplicity we denote by
the same symbols the physical states and observables and their mathematical representations.
Practically, we shall test only two types of models, classical and quantum. Both can be unified
within the mathematical scheme called the C∗-algebraic model. However, for all practical
purposes one can always think about the two simplest extreme cases—the classical algebra
of complex functions C(") on a ‘discrete phase-space’ " = {1, 2, . . . , n} and the quantum
algebra Mn of n × n complex matrices. A C∗-algebra A is a complete complex linear space
with a norm ‖ ·‖ , adjoint operation A → A† and the product AB satisfying natural relations
including the condition ‖AA†‖ =‖ A‖2. We always assume that A contains a unit element I.
The main difference between the algebra of functions and the algebra of matrices is that the
former is commutative (i.e. AB = BA) while the latter is not. Linear and bounded functionals
on A form a linear and normed space. The linear functional ω is positive if ω(AA†) ! 0 for
all A ∈ A and normalized if ω(I) = 1. The elements of the form AA† are called positive and
can be used to define a partial order relation in C∗-algebra A,

A " B if and only if there exists C such that B = A + CC†. (2)
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Within the C∗-algebraic model we identify all bounded observables with self-adjoint
(i.e. A = A†) elements in such a way that the k-moment of the observable A as defined by
(1) is identified with the algebraic k-power of the corresponding element of the C∗-algebra
A. The set of all states is identified with the set of all positive linear functionals on C∗-
algebra A . This is a convex set and its extremal points are identified with pure states. For
the given two examples, we obtain the standard pictures. In the classical theory (positive)
observables are (positive) real functions A(γ ), γ = 1, 2, . . . , n, and the states form a simplex
of probability distributions P = (p(1), p(2), . . . , p(n)) with extreme points (pure states) of
the form p(j) = δjk . The possible outcomes of the measurement of A are given by the
numbers {A(γ )} and for the moments we have 〈Ak〉P =

∑
γ p(γ )A(γ )k . In the quantum

theory (positive) observables are (positive) Hermitian matrices with spectral representations
A =

∑
j ajPj , P

2
j = Pj ,

∑
j Pj = I , and the states are identified with density matrices

ρ =
∑

m ρm|m〉〈m|, 〈m′|m〉 = δm′m. Extreme points (pure states) are one-dimensional
projections |ψ〉〈ψ | identified with the normalized vectors in the Hilbert space Cn. The
possible outcomes of the measurement of A are given by its eigenvalues {aj } and for the
moments we have 〈Ak〉ρ = Tr(ρAk) =

∑
jm ρm(aj )

k〈m|Pj |m〉.

2.2. The main theorem

For a concrete physical system it is very easy to find the differences between the predictions
of the classical and quantum model. However, our aim is to find the quantumness tests which
are model independent but still operational and refer to the most fundamental mathematical
differences between the classical and quantum theories. Assuming that we always work in
the framework of C∗-algebraic scheme, we can use the following general theorem which
summarizes some basic results in the theory of C∗-algebras [10, 11].

Theorem 1. The following statements are equivalent.

(a) For any pair A,B ∈ A , 0 " A " B implies A2 " B2.
(b) For any pair X, Y ∈ A , X ! 0, Y ! 0 implies XY + YX ! 0.
(c) C∗-algebra A is commutative.
(d) C∗-algebra A is isomorphic to the algebra of continuous functions on a certain compact

set.

Proof. The equivalence of (c) and (d) is an important result proved, for example, in [10, 11].
The equivalence of (a) and (c) has been proved in [12]. For practical purposes, in order to prove
the equivalence of (a) and (c) we can use as a proof the qubit example from section 3 because
all physically relevant quantum C∗-algebras contain a two-dimensional matrix algebra M2.

In order to prove a) ⇒ b), take A = X and B = X + tY . Then

0 " B2 − A2 = t (tY 2 + XY + YX) for any t ! 0, (3)

which implies XY + YX ! 0.
In order to prove (b) ⇒ (a), use the inequality 0 " A " B for

2(B2 − A2) = (B − A)(B + A) + (B + A)(B − A). (4)
#

Remarks. In the following, theorem 1 will be used to design the ‘quantumness tests’ which
can exclude classical algebraic models for given sets of experimental data. In condition (a),
instead of the square function one can use any operator non-monotone function4, for example
A → Aα, α > 1.
4 A function f : R → R is an operator monotone if for all n and all A, B ∈ Mn we have that A ! B implies
f (A) ! f (B).
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2.3. Hidden variable models

Although our aim is not to challenge the quantum mechanical model of Nature but rather
to discuss the means of distinguishing quantum systems operating in a semiclassical regime
from those which still preserve some experimentally accessible and practically useful quantum
features, a brief discussion of the relations between our notion of a classical algebraic model
(CAM) and the notion of a hidden variable model (HVM) seems to be unavoidable.

There exist different definitions of HVMs which are probably not equivalent from the
mathematical point of view (see the monograph [13] and references therein). Their common
feature is the existence of a set of parameters {λ} (hidden variables) which determine all
possible outcomes of experiments performed on a given system. This idea can be realized
assuming that the experiments A,B,C, . . . produce outcomes {a}, {b}, {c}, . . ., which are
functions of the hidden variables a(λ), b(λ), c(λ), . . . . The perfect system’s preparation
procedure can be described by fixing the hidden variable λ, which in principle may depend not
only on the preparation device but also on the context, i.e. the set of observables to be measured.
As we would like to model nondeterministic theories we assume that the preparation procedure
is not perfect but rather given by the probability distribution on the set of hidden variables
which may still depend on the context and is denoted by P(λ;A,B,C, . . .). The mean value
of the observable A and the correlations of A,B are given by the following expressions:

〈A〉P =
∫

P(λ;A,B,C, . . .)a(λ) dλ

〈AB〉P =
∫

P(λ;A,B,C, . . .)a(λ)b(λ) dλ.

It seems that the presented scheme covers most of the known examples of HVMs, including
the so-called nonlocal and/or contextual ones. The CAM considered in this paper can be
treated as a special case of the HVM of above with the additional assumption that the state
preparation procedure and the different measurement procedures are independent of each other
which implies the following independence condition5:

P(λ;A,B,C, . . .) ≡ P(λ). (5)

Condition (5) is often attributed to locality in the sense of a special relativity theory. On the
other hand, it is rather related to the possibility of decomposing the Universe into weakly
interacting subsystems which correspond, for example, to a given physical system, preparing
apparatus and measurement devices.

3. Quantumness witnesses

From theorem 1 it follows that for a quantum algebraic model (QAM) we can always find
pairs of observables {A,B; 0 " A " B} or {X, Y ;X ! 0, Y ! 0} such that the operators
V = B2 − A2 and C = XY + YX possess negative eigenvalues. Analogical to the theory of
entanglement [14] we can call such V and C quantumness witnesses (QW). We remind the
reader that an entanglement witness is an observable which possesses at least one negative
eigenvalue but for all separable states yields positive mean values. The main problem is to
design experimental tests of the ‘violation of classicality’, i.e., an experimental proof of the
existence of negative outcomes for V and C. Within the algebraic framework one assumes that
for any self-adjoint element of A there exists a physically realizable observable. In particular,
for two observables X and Y the observables X ± Y and XY + YX also exist. However, in

5 This condition is called ‘λ-dependence ’ in [13].
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general, there is no operational prescription as to how to construct the corresponding apparatus
if we know how to do it for X and Y. Fortunately, for the quantumness witness V it is enough
to measure the second moments of A and B and find a state ρ such that 〈B2〉ρ < 〈A2〉ρ . For
C the situation is different, namely in the general case there is no operational prescription
as to how to measure the (symmetrized) correlations 〈XY + YX〉ρ . The exception is the
case of jointly measurable (i.e. commuting) observables where we simply take as outcomes
for XY = YX the products of the outcomes for X and Y. Another situation is discussed in
section 5, in the context of Bell inequalities, where the mean value of C is related to the mean
value of the Bell observable, whose mean value can be computed from the experimental data.

3.1. The abundance of quantumness witnesses

Theorem 1 ensures only the existence of QW for the quantum algebraic model. Theorem 2
shows their abundance.

Theorem 2. For any n × n density matrix ρ ,= 11/n there exist quantumness witnesses of the
type V = B2 − A2 and C = XY + YX. For the maximally mixed state such witnesses do not
exist.

Proof. We first prove the case n = 2. The density matrix can be written as

ρ = (1 − r)
11
2

+ r |ψ〉 〈ψ | (6)

with r ! 0 and r = 0 for the maximally mixed state. We look for two observables of the forms
X = |a〉 〈a| , Y = |d〉 〈d| for some normalized vectors |a〉 , |d〉 respectively. We consider the
expansion

|d〉 = α |a〉 + β |a⊥〉 , 〈a|a⊥〉 = 0, |α|2 + |β|2 = 1.

Thus,

XY + YX ≡ {X, Y } = 2|α|2 |a〉 〈a| + αβ∗ |a〉 〈a⊥| + α∗β |a⊥〉 〈a| .
The eigenvalues of {X, Y } are λ± = |α|(|α| ± 1), and we can always choose |a〉 and |d〉 so
that |ψ〉 coincides with the eigenvector of {X, Y } corresponding to λ−.

Therefore, we have that for such choices

Tr(ρ{X, Y }) = 1 − r

2
Tr{X, Y } + r〈ψ, {X, Y }ψ〉

= (1 − r)|α|2 + r|α|(|α| − 1)

= |α|(|α| − r),

which becomes strictly negative for

0 < |α| < r,

and provides the QW C = {X, Y }. To obtain the QW V = B2 − A2 we follow the arguments
in the proof of theorem 1 with A = X and B = X + tY . It is worth noticing that for choices
A = |a〉 〈a| , B = |a〉 〈a| + t |d〉 〈d|, one immediately sees that B2 − A2 ! 0 for all t > 0,
if |α| ,= 1.

In order to generalize the result to an arbitrary n one should note that the condition
ρ ,= 11

n
means that there are always two eigenvalues of ρ , say ρ1, ρ2 satisfying ρ1 > ρ2 ! 0

with corresponding eigenvectors |1〉, |2〉. Therefore, we can repeat the proof of above with
operators X, Y having the supports on the two-dimensional subspace spanned by |1〉, |2〉. The
second statement of the theorem follows from the fact that Tr(XY) ! 0 if both X ! 0 and
Y ! 0. #
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4. Test of quantumness for a single system

According to the discussion in the previous section, we choose the C∗-algebraic model as a
proper mathematical idealization. Our aim is to propose tests which can eliminate the CAM
as a valid description of the experimental data. We assume that the experimental situation can
be described in terms of the set Sexp of accessible initial states of a certain physical system
and the set of accessible measurements (observables) Aexp. For any observable A ∈ Aexp and
any state ρ ∈ Sexp, we can extract (by repeating measurements on the fixed initial state ρ)
the statistics of the measurement outcomes. Therefore, if A ∈ Aexp then for any real function
F,F (A) ∈ Aexp. We say that the pair (A,S), where A is a C∗-algebra and S is a set of
linear, positive and normalized functionals on A, is a minimal algebraic model for our set of
experimental data if

(i) we can identify Aexp with a subset of A and Sexp with a subset of S, such that the
corresponding mean values reproduce experimental data;

(ii) for any pair of observables A,B ∈ Aexp , 〈A〉ρ " 〈B〉ρ for arbitrary ρ ∈ Sexp implies
〈A〉σ " 〈B〉σ for arbitrary σ ∈ S.

Example 1. Suppose Sexp = {|i〉 〈i|}, with {|i〉} being a complete orthonormal basis for Cn,
and Aexp is given by any set of observables diagonal in said basis. Then the set of observables
diagonal in the same basis plus any set of states containing Sexp is a minimal algebraic model.

According to the above definition, if we can find two accessible observables A and B
such that for all accessible states 0 " 〈A〉 " 〈B〉, and if we can prepare a certain state ρ

satisfying 〈A2〉ρ > 〈B2〉ρ , then by definition, we can say that the set of experimental data does
not admit a minimal classical model. Therefore, one is led to conclude that the corresponding
physical system preserves some genuine quantum features, as any minimal model would have
to be quantum according to theorem 1. However, one could still argue that there may exist
a ‘non-minimal’ classical model, with the observable B − A possessing negative outcomes
which are averaged out by too coarse-grained initial states (probability distributions). The
possibility of this alternative might be called the minimality loophole. In any case, note that
this latter possibility would mean that the resolution on the side of observables is (much)
higher than the corresponding resolution on the side of initial states, and this does not seem
a reasonable condition. Indeed, in practice we typically use the same techniques for both the
state preparation and the measurements. Therefore, within the given technological means,
both resolutions should be of the same order.

Example 2. Given the interval [0, 3] on the real line, consider the functions

A(x) =
{

3
2 x ∈ [0, 2]

0 x ∈]2, 3],
B(x) =

{
3 x ∈ [0, 1]

1 x ∈]1, 3].
(7)

Further, consider the algebra A of all real functions with support on the interval [0, 3] and of
the form

f (x) =
3∑

i=1

fiχi(x),

with χi as the indicator function:

χi(x) =
{

1 x ∈ [i − 1, i]
0 elsewhere,

so that each function f in A is identified with a vector (fi)i ≡ (f1, f2, f3). The
algebraic structure is given by the operations α(fi)i ≡ (αfi)i, (fi)i + (gi)i ≡ (fi + gi)i and

6
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Figure 1. The absence of ordering between the observables A and B is revealed by a set of
experimentally accessible states. Observable functions are depicted as segment lines. Hatched
rectangles correspond to states.

Figure 2. Minimality loophole: experimental states that are too coarse-grained may erroneously
lead to claims of quantumness of an experiment which admits a non-minimal classical algebraic
model. Observable functions are depicted as segment lines. Hatched rectangles correspond to
states.

(fi)i × (gi)i ≡ (figi)i . It is immediately seen that A is spanned by A and B under the same set
of operations. States for this algebra may be taken to be all probability density distributions
p(x) ! 0,

∫ 3
0 p(x) dx = 1. The expectation value for an observable f with respect to a state p

is then given by 〈f 〉p =
∫ 3

0 f (x)p(x) dx =
∑

i pifi , with pi ≡
∫ 3

0 χip(x) dx. It is clear that
(i) two algebra elements (observables) f and g are ordered as f ! g, i.e., 〈f 〉p ! 〈g〉p for
all p, if and only if fi ! gi for all i = 1, 2, 3. Thus, three experimentally accessible ‘peaked
enough’ states such as

pi(x) =
{

2 x ∈
[
i − 1 + 1

4 , i − 1
4

]

0 elsewhere

are sufficient to determine whether any two observables in the algebra A are ordered. In
particular, by checking said states one finds that the two observables A and B are actually not
ordered; therefore, they cannot be used to test any quantumness in the sense of theorem 1 (see
figure 1).

Example 3. Consider the same setting as in example 2, in particular the same observable
functions A and B. However, let us consider more coarse grained experimentally accessible
states (see figure 2):

7
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q1(x) =
{

1
2 x ∈ [0, 2]

0 elsewhere,
q2(x) =

{
1
2 x ∈ [1, 3]

0 elsewhere.

The latter states are such that

〈B〉qi
> 〈A〉qi

> 0 for i = 1, 2,

but while 〈B2〉q1 > 〈A2〉q1 > 0, one has 〈B2〉q2 − 〈A2〉q2 = −0.125 < 0. Thus, it is clear
that the choice of observables and states for the experiment does not admit a minimal classical
model. While one could be led to conclude that the interpretation of the experiment requires
a quantum model, it is clear that the model is classical by construction. In any case, the
said classical model is non-minimal, i.e. ordering on the experimental states does not lead to
ordering for the full model. This is due to the fact that the experimentally accessible states do
not have a high enough ‘resolution’.

4.1. A single qubit

As an example, we would like to find the optimal quantumness witness V = B2 − A2 for a
qubit which has a maximal magnitude of its negative eigenvalue under a certain normalization
condition. Such an optimal choice should be useful for designing experiments with particular
implementations of qubits [8]. In contrast to the previous paper [1] where a numerical solution
was found for the normalization condition 0 " A " B " 11, here we find an analytical solution
for the more convenient normalization

Tr{B} = 2. (8)

We begin with the following parametrization in terms of Pauli matrices .σ = (σ1, σ2, σ3):

A = a011 + .a · .σ , B = 11 + .b · .σ , (9)

and introduce the following scalar parameters: p = |.a|2, q = |.b|2, r = |.b − .a|2 and s = a0.
The condition 0 " A " B can be expressed by the inequalities

s2 ! p and (1 − s)2 ! r. (10)

The lower eigenvalue of V = B2 − A2 is calculated to be

λ−
V = 1 − p + q − s2 − 2

√
q − qs + (r + p(s − 1))s. (11)

In minimizing λ−
V , it can be easily seen that r should be taken to be a maximum, thereby

making the second inequality in equation (10) an equality. This equality means that for the
lower eigenvalue of M to be a minimum, the determinant of B −A must be zero. Additionally,
one of the eigenvalues of B − A is zero and the other positive. This satisfies the ordering
condition 0 " A " B. This naturally leads us to a different, more convenient, parametrization.
We now choose A and B such that

A =
(

−2(t + u − 1) 2z

2z 2u

)
, B =

(
2 − 2u 2z

2z 2u

)
. (12)

This immediately gives us

B − A =
(

2t 0
0 0

)
(13)

and

V = B2 − A2 =
(

−4t (t + 2u − 2) 4tz

4tz 0

)
. (14)

8
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The lower eigenvalue of V is now calculated to be

λ−
V = −2(t (t + 2u − 2) +

√
t2((t + 2u − 2)2 + 4z2)). (15)

The inequality in (10) expressed in terms of these new parameters can be written as

z2 " u(1 − u − t). (16)

It is easy to see that in order to minimize (15), the parameter z should be a maximum under
the constraints. This results in (16) being an equality, giving us the lower eigenvalue of the
witness V , written in terms of two parameters u and t, as

λ−
V = −2(

√
t2((t − 2)2 − 4u) + t (t + 2u − 2)). (17)

To solve this equation, the partial derivatives must be zero at the extrema of the lower
eigenvalue. The partial derivatives are

∂λ−
V

∂u
= 4t

(
1

√
(t − 2)2 − 4u

− 1

)

(18)

and

∂λ−
V

∂t
= −4

(

t +
(2 + t (t − 3) − 2u)

√
(t − 2)2 − 4u

+ u − 1

)

. (19)

In solving ∂λ−
V

∂u
= 0 and using the fact that t is nonzero, we can write

(t − 2)2 = 4u + 1. (20)

This is the same as writing

det A = 0, (21)

or equivalently that the lower eigenvalue of A be zero. Substituting u = (t−2)2−1
4 into

equation (19), we can then write

∂λ−
V

∂t
= − (t − 1)(3t2 − t)

t
= (t − 1)(3t − 1). (22)

We do not wish to take the trivial solution t = 1, and this leaves us with

u = 4
9 , t = 1

3 .

The minimum is now found to be

λ−
V (min) = − 4

27 . (23)

It is convenient to use a parametrization with one of the operators (say B) being diagonal. A
straightforward computation leads to

A =




2

99 (33 + 5
√

33)
4
√

2
33

3

4
√

2
33

3
2
3 − 10

3
√

33



 ,

B =
(

1
9 (9 +

√
33) 0

0 1
9 (9 −

√
33)

)

,

(24)

with the eigenvector corresponding to λ−
V (min) = − 4

27 given by
( 2

3

√
2, 1

3

)
.

9
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(a)

(b)

Figure 3. Expectation values of B − A and B2 − A2 on the pure state ψ(θ, φ) (equation (25)).
The x- and y-axes are the parameters θ and φ respectively, while the z-axis is the range of mean
values of (a) B − A and (b) B2 − A2. The dark gray horizontal plane is given by z = 0.

The parameters for the observables A and B in equation (24) lead to a maximal violation
of the ordering condition 0 " A2 " B2. Figure 3 may be helpful for designing an experiment
for a single qubit to test for such a violation.

Figure 3 shows the mean values of the operators 〈B −A〉 and 〈B2 −A2〉 on the pure states
of a single qubit

|ψ(θ, φ)〉 = cos
(
θ

2

)
|0〉 + exp(iφ) sin

(
θ

2

)
|1〉 , (25)

where 0 " θ " π and 0 " φ " 2π .
In figure 3(a), it is clear that the expectation 〈B − A〉 is never negative. This satisfies the

ordering condition from equation (2), A " B.

The behaviour of the expectation 〈B2 − A2〉 is much more interesting and is shown in
figure 3(b). In this picture, one can clearly see that 〈B2 − A2〉 becomes negative around
θ = 2

3π and φ = 0. This area is a connected subset of the Bloch sphere and should be the
focus of any experiment aiming to determine whether or not the behaviour of a system may
be described by classical theories.

10
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4.2. Additive observables for N-body systems

Very often the set of accessible observables is rather restricted and includes only the observables
with a particular structure. For example, for many-body systems we usually restrict ourselves
to collective, global, observables A and B of the form

A = 1
N

N∑

i=1

ai, B = 1
N

N∑

i=1

bi (26)

where ai and bi are copies of the single particle observables a, b respectively and N is the
number of particles. Assume that 0 " a " b and the single particle quantumness witness
v = b2 − a2 has minimal negative eigenvalue −µ. With these collective observables, it is
interesting to study their behaviour as N becomes large. Intuitively one can expect that as N
increases, so any detectable quantum behaviour should diminish. This can be seen for the
collective witness V = B2 − A2 which is rewritten in terms of ‘diagonal’ and ‘off-diagonal’
terms as

V = 1
N2

N∑

i=1

(
b2

i − a2
i

)
+

1
N2

N∑

i=1

N∑

j=1,i ,=j

(bibj − aiaj ). (27)

The first sum is simply the sum of the individual witnesses, vi , and the second term is positive.
This second sum can be rewritten as

1
N2

N∑

i=1

N∑

j=1,i ,=j

(bibj − aiaj ) = 1
N2

N∑

i=1

N∑

j=1,i ,=j

(bi + ai)(bj − aj ), (28)

where the terms aibj −biaj disappear under the sum. Since we have the condition bi ! ai ! 0,
and since the operators ai, bi and aj , bj act on different spaces for i ,= j , it can be seen that this
sum is positive. Therefore, the magnitude of the lowest negative eigenvalue of V is bounded
from above by µ/N and quantum behaviour becomes undetectable for collective observables
and large N.

This should have consequences for the discussion of the quantumness of superconducting
qubits and BEC. Namely, for both cases the accessible observables are particle numbers
or electric charge in a macroscopic region, macroscopic current, etc. which are all of the
collective type (26) with typical values of N = 105–109.

5. Bell inequalities and quantumness witness

Bell inequalities, in various formulations, characterize correlations between measurement
outcomes which admit the so-called local hidden variable model (LHVM). Here, according
to the discussion in section 2.3, we replace the LHVM by a CAM. For simplicity we consider
only the Clauser, Horne, Shimony and Holt version (CHSH inequality) where the observables
A1, A2 are measured on the one subsystem and the observables B1, B2 on the other one. We
assume that all observables are dichotomic, i.e. their outcomes are equal to ±1. As discussed
in section 2.3, in this model all observables are treated as classical functions Ai(λ), Bj (λ) on
a common space 0 and take the values ±1 only. Then the observables

X = 2 ± (A1B1 + A1B2), Y = 2 ± (A2B1 − A2B2). (29)

are positive and hence XY ! 0 as well. Therefore, for any probability distribution P(λ) we
obtain the inequality

0 " 1
2 〈XY 〉P = 2 ± 〈(A1B1 + A1B2 + A2B1 − A2B2〉P , (30)
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which is equivalent to the standard form of the CHSH inequality:

|〈(A1B1 + A1B2 + A2B1 − A2B2)〉P | " 2. (31)

The experimentally observed violations of the inequality (31) means that Nature cannot be
described by a CAM.

5.1. Test of quantumness for a bipartite system

The CHSH inequality (31) can also be used to test whether a quantum device operates in the
semiclassical regime or not. It seems to be even more reliable than the single-system test
discussed in section 4. Namely, we now do not have the minimality loophole problem because
any violation of (31) means that the description in terms of a CAM is not valid.

However, to perform the test of (31) we need, firstly, to control precisely the system
composed of two subsystems which is usually much more difficult than in the case of a single
system. Secondly, we have to perform simultaneously two independent measurements on
both subsystems. Even if the system is essentially classical it is often very difficult to satisfy
the independence condition (5) which leads to the so-called locality loophole. Therefore, for
many implementations of quantum devices relevant to quantum information processing the
single-system test might be much easier to perform than the bipartite one.

5.2. Bell observables and quantumness witness

Bearing in mind definitions (29), the relation to quantumness witnesses is rather obvious.
Consider now the general case of four dichotomic quantum observables A1, A2, B1, B2

respectively. Replacing the product of functions by a symmetrized productAi◦Bj = 1
2 {Ai, Bj }

we obtain the positive observables X and Y for a general quantum model, and C = XY +YX is
a quantumness witness. However, neither the observable C nor its mean value is operationally
well defined. Let us assume that {Ai} and {Bj } correspond to different subsystems,
[Ai, Bj ] = 0 and the mean value of the following Bell observable B (compare with [16])
has an operational meaning as a combination of measurable correlations:

B = 2 ± (A1B1 + A1B2 + A2B1 − A2B2). (32)

In this case, the Bell observable is related to the quantumness witness C by the expression

2B = C + [A1, A2][B1, B2], (33)

which provides an interesting relation between the Bell inequality, the QW and the Heisenberg
uncertainty relations (compare with [17] for Bell inequalities versus entanglement witnesses).

6. Generalizations of QW

The presented examples of quantumness witnesses suggest a certain generalization of this idea.
Take two observables described by self-adjoint operators R and S with the spectra Spec(R)

and Spec(S) respectively.
An observable W = W(R; S) written as an (ordered) polynomial or power series of R, S

is QW if it possesses at least one negative eigenvalue and the function w(r; s) obtained by
the replacement of operators by real numbers R → r , S → s in W(R; S) is positive, i.e.
w(r; s) ! 0 for all r ∈ Spec(R) and s ∈ Spec(S).

The previously introduced QW of the form V = B2 − A2 satisfies this definition taking
R ≡ A and B ≡ R + S with R ! 0 and S ! 0. Indeed, V ≡ W(R; S) = R2 + RS + SR

12



J. Phys. A: Math. Theor. 41 (2008) 495303 R Alicki et al

possesses a negative eigenvalue and w(r; s) = r2 + 2rs ! 0 for r, s ! 0. The same holds for
QW of the type C = XY + YX with the identification X = R ! 0, Y = S ! 0.

Another class of quantumness witnesses is related to phase representations of quantum
mechanics in terms of coherent states and the so-called P-representation [18, 19]. Consider
a single quantum oscillator with the canonical pair of observables Q,P , the annihilation
operator a = 1√

2
(Q − iP) satisfying

[Q,P ] = i, [a, a†] = 1 (34)

and the family of coherent vectors

a|z〉 = z|z〉, z = 1√
2
(q − ip), q, p ∈ R (35)

with the normalization and completeness conditions

〈z|z〉 = 1,

∫
d2z|z〉〈z| = I. (36)

Any density matrix ρ can be represented by a function (distribution) on the phase space
denoted by ρ̃(z) such that (P-representation)

∫
d2z ρ̃(z)|z〉〈z| = ρ. (37)

The dequantization map for the states ρ → ρ̃(z) ≡ ρ̃(q;p) is linear but does not preserve
positivity. Therefore, the function ρ̃(z) is called the quasi-probability distribution and the
states which have positive ρ̃(α) can be considered as ‘classical’ at least with respect to this
particular phase-space representation.

We now construct a whole family of QW in the form of a series

W(Q;P) =
∑

m,n

cmn(a
†)man, (38)

such that the function

w(q;p) =
∑

m,n

cmnz̄
mzn ! 0 (39)

and W(Q;P) possesses at least one negative eigenvalue. Obviously, for any classical state ρ

Tr(ρW) =
∫

dq dpw(q;p)ρ̃(q;p)) ! 0, (40)

and hence W(Q;P) detects certain ‘non-classical’ states.
A simple example is provided as the observable Km with m ! 1 defined by

Km = (a†)2a2 − 2ma†a + m2 = N2 − 2
(
m + 1

2

)
N + m2 (41)

with N = a†a, km(z) = (|z|2−m)2. It is phase-space QW because Km has negative eigenvalues

corresponding to the eigenvectors |n > of N with n ∈
(
m + 1

2 −
√

m + 1
4 ,m + 1

2 +
√

m + 1
4

)
.

7. Conclusions

Motivated by the idea of entanglement witnesses we have introduced special types of quantum
observables called quantumness witnesses (QW). The main feature of QW is that for any state
which is considered in a given context as ‘classical’, its mean value is positive but nevertheless
its spectrum contains at least one negative eigenvalue. The notion of classicality is understood
here in a very practical and ‘contextual’ sense. Namely, we assume that we have at our disposal
a restricted set of experimental data which we want to interpret in terms of sets of accessible
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states and observables within a classical or quantum model. Properly chosen QW can provide
an experimental test which detects among the accessible states those which cannot be described
by a classical model. The necessary condition is the possibility of computing the average of
the QW using experimental data. A natural application of this idea is the implementation of
quantum information processing. Devices designed for quantum information processing must
work in the quantum regime and therefore violation of classicality described in terms of QWs
could be the first experimental test of their usefulness.
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