Leopold-Franzens-Universität Innsbruck Institut für Experimentalphysik Technikerstrasse 25 http://www.uibk.ac.at

Practical Quantum Key Distribution

Gregor Weihs

- ●QKD Protocols
- ●Implementations of QKD
- ●Photonic qubit QKD
- \bullet **Channels**
- ●Example: The Waterloo QKD

Review articles:

- ● N. Gisin et al., *Quantum Cryptography,* Reviews of Modern Physics **74,** 145 (2002).
- ● M. Dusek et al., *Quantum Cryptography,* Progress in Optics **49,** 381 (2006).
- ● V. Scarani et al., *A Framework for Practical Quantum Cryptography,* arXiv:0802.4155, to appear in RMP.

Book:

● G. Van Assche, *Quantum Cryptography and Secret-Key Distillation,* Cambridge University Press (2006).

- ● Alice sends **single photons** with 1 out-of-4 polarizations
- ● Bob measures in either + or × **basis** and gets one of two results (0, 1) in either case.
- ● Basis choices are announced after the measurement via **authenticated**public classical channel (internet, broadcast, …)
- ● Measurement results for agreeing bases are key bits

C. H. Bennett & G. Brassard, *Quantum Cryptography: Public-key distribution and coin tossing* in *Proceedings of IEEE International Conference on Computer Systems and Signal Processing, IEEE,* 175-179 (1984).

- ● Security proofs give a lower bound on the achievable secure key rate as a function of **measurable** parameters
- ● They tell us how much key has to be sacrificed in privacy amplification in order to eliminate Eve's partial knowledge
- ● Shor & Preskill, PRL **85,** 441 (2000): through reduction to entanglement purification and quantum error correction the secret key length is lower bounded by a factor of

 $1 - 2h(QBER)$ $h(x) = -x \log x - (1 - x) \log(1 - x)$

w.r.t the number of sifted bits, with exponentially small knowledge of the eavesdropper.

- ●Therefore if QBER < 11%, the secret key length is finite.
- ●With imperfect error correction we need to use

 $1-h(QBER) - h_{EC, leakage}$

●

Noisy Keys

- ● Raw keys are noisy, because of errors in
	- ●Channel
	- Equipment (dark counts)
	- ●Eavesdropper
	- (Classical) Error correction can eliminate errors
		- ● Simple example: Take two blocks of k bits, compare parity, if different, dicscard

Alice 01100000 11011101 01111110 00100100 11110100 11011001 10010111 00010101Bob 01000000 11011101 01111110 00100100 11110100 11011011 10010111 00010101

Alice new 10001011 11011110 00110011 11001111 11010110 01010Bob new 10001011 11011110 00110011 11001111 11010110 01010

●

Simplified Cascade Error Correction

- ● Optimized for computational efficiency (vs. information leakage)
- ● 4 passes
	- ● Use QBER as determined in previous chunk to choose block size
	- ● Split key into blocks (randomly chosen bit order, different for each pass)
	- ● Apply BINARY to correct one error in each block (for odd numbers of errors)
		- •Calculate parity

•

- On disagreeing parity divide block in half
- •Repeat until error found
- ● If error is found in later pass, there must have been even number of errors in previous pass' block \rightarrow go back and correct using BINARY
- Keep track of every bit sent via the public channel

0.589 0.577

0.717 0.697

0.817 0.805

BER

0.1

0.125

0.15

G. Brassard and L. Salvail, "Secret-Key Reconciliation by Public Discussion," Advances in Cryptology – EUROCRYPT '93, LNCS 765, 410 (1994).

●

Privacy Amplification

- ●All the bits revealed during error correction must be discarded
- ● Any information an eavesdropper could have according to the QBER can be made exponentially small by hashing
- ● Determine final key length estimate: R = N (1– h₂(QBER)) – #(bits leaked) – #(security bits)
- ●Shor-Preskill: $R = N - 2H_2(QBER)$ Since #(bits leaked) > $H_2(QBER)$ this is always secure
- ●Calculate $k = (m * (raw key) + n)$ mod p
	- ●*m, n* are random number generated from a shared seed
	- ●*p* is a shared big prime number
- Use the last *R* bits of *k* as the key

Privacy Amplification

By source

● Prepare and measure \bullet Entanglement based

By Modulation

- \bullet **Discrete**
- ●**Continuous**
- ●Distributed phase reference

By implementation

- \bullet One-way
- \bullet Plug & Play

Discrete = Qu**d**its

- ●Polarization
- \bullet Time-bin
- ●Spatial Mode

Continuous Variables

●Quadratures of field modes

Distributed Phase Reference

- ●Differential Phase Shift
- ●Coherent One-Way

- ● Alice sends **single photons** with 1 out-of-4 polarizations
- ● Bob measures in either + or × **basis** and gets one of two results (0, 1) in either case.
- ● Basis choices are announced after the measurement via **authenticated**public classical channel (internet, broadcast, …)
- ● Measurement results for agreeing bases are key bits

C. H. Bennett & G. Brassard, *Quantum Cryptography: Public-key distribution and coin tossing* in *Proceedings of IEEE International Conference on Computer Systems and Signal Processing, IEEE,* 175-179 (1984).

Entanglement Based

- ALICE BOB
- ● Source can be under eavesdroppers control
- ●Immune to sidechannels

Continuous Variables

- ● Alice sends coherent states with a random modulation in a given quadrature
- ● Bob chooses randomly to measure a quadrature using homodyne detection
- ● Alternative: Squeezed states

$$
\mathbf{E}_{\mathbf{k}} = i \sqrt{\frac{\hbar \omega_{\mathbf{k}}}{2 \epsilon_0}} \left[\hat{a}_{\mathbf{k}} \mathbf{u}_{\mathbf{k}} e^{-i \omega_{\mathbf{k}} t} - \hat{a}_{\mathbf{k}}^{\dagger} \mathbf{u}_{\mathbf{k}} e^{i \omega_{\mathbf{k}} t} \right]
$$

$$
\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} |n\rangle
$$

Continuous Variables

Distributed Phase Reference

D. Stucki et al., APL **87,** 194108 (2005).

17

Photon Polarization

- \bullet Every mode has two orthogonal polarizations (directions of the electric field)
- \bullet Arbitrary polarization states are superpositions
- \bullet Classically, polarization is described on the Poincaré sphere

The Dual Rail Qubit

For stability one can multiplex the two rails onto one.

Sources

 \bullet Attenuated lasers: poissonian statistics

$$
p(n,\mu) = \frac{\mu^n}{n!}e^{-\mu}
$$

●In order to optimize the secure key rate μ has to be set to a value that scales with *t*, the transmission of the channel

 0.4

 0.35

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

 $\mathbf 0$

 $\mathbf{0}$

 $\overline{1}$

 $\overline{2}$

 $\overline{\mathbf{3}}$

$$
\mu_{\text{opt}} \approx t \eta \frac{1 - h(\text{QBER}) - h(2 \text{QBER})}{1 - h(2 \text{QBER})}
$$

$$
K \approx R\frac{1}{2}\mu_{\text{opt}}[1 - h(\text{QBER}) - h(2 \text{QBER})]
$$

 \overline{I}

6

Single Photon

Gregor Weihs, University of Innsbruck

$K \approx R[1 - 2h(QBER)]$

universitä
innsbruck

Single Photons

Second Order Degree of Coherence

Measured by Hanbury Brown – Twiss Interferometry

$$
g^{(2)}(\tau) = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle\langle I(t+\tau)\rangle}
$$

CW

Two-photon suppression limited by detector resolution and finite reexcitation probability

Pulsed

Two-photon suppression only limited other background (filter performance)

● Alice randomly chooses from a few (e.g. 3) different mean photon numbers

$$
\mu_{\text{opt}} \approx \frac{1}{2} \left[1 - \frac{h(\text{QBER})}{1 - h(\text{QBER})} \right] \qquad \text{K} \approx R \frac{1}{2} \mu_{\text{opt}} \left[1 - 2h(\text{QBER}) \right]
$$

Modulation

- ● Combine multiple lasers and pulse them individually
	- ●Beware of side channels!

PC Alice m Decoy⁻ m FF. **FCN** m Signal: **Test** LDD

- ● Modulate laser
	- ●Polarization
	- ● Phase (commercially up to 40 GHz)
	- \bullet Amplitude for decoy

Some Facts About Detectors

- ● Detection efficiency = Quantum efficiency * Amplification efficiency
- ● For red / very near infrared light about 70%, ~10 /s noise
- ● Most common: Single Photon Avalanche Diode (SPAD)
- ● For telecommunication wavelengths (1550 nm): InGaAs APDs have <15% efficiency, some 10000 /s noise counts
- ● Alternative detectors
	- Visible Light Photon Counter
	- Superconducting Transition Edge **Detector**

Performance comparison

universitä
Innsbruck

V. Scarani et al., arXiv:0802.4155

CV Continuous VariablesWCP Weak Coherent PulsesCOW Coherent One-Way EB Entanglement Based decoy Decoy States 1-ph Single Photon Source

Gregor Weihs, University of Innsbruck

● Guide light in singlemode optical fibers

Pfennigbauer et al., JON **4,**

GAP-Optique, U. Geneva

П Broadcast photons from a satellite using telescopes

Gregor Weihs, University of Innsbruck

Optical Fibers

- \bullet Fused silica core guides light
- \bullet Attenuation by Rayleigh scattering
- \bullet Minimum @1550 nm: 0.17 dB/km = 4%/km loss
- ● Installed fiber typically has 0.3 dB/km
	- Polarization

●

- ●Birefringence needs to be compensated
- ●Depolarization due to different group velocities $(\sim \vee L)$

Jacket

- ●Send photons through air in "beam"
- ●Diffraction causes beam to spread $(\sim L^2)$
- ● Turbulence causes beam wander
	- \rightarrow Can be incorporated as additional diffraction
- ● Scattering causes exponential attenuation

$$
A = \frac{L^2(\theta_T^2 + \theta_{\text{atm}}^2)}{D_R^2} 10^{\frac{A_{\text{atm}}}{10}}
$$

G. Bianco: *The Matera Laser Ranging Observatory System*

The MLRO telescope

- \bullet Diffraction angle ~(wavelength/diameter)
- \bullet Need stable pointing
- \bullet For satellites: tracking

Atmosphere

Satellites

36000km

- ● From 1000 km altitude the horizon is 3000 km away
- ● Atmospheric attenuation becomes negligible above 10km

- 1 LEO satellites move fast
- П Can only be "seen" from a ground stations for a small fraction of the orbit
- L L Diffraction loss becomes very severe for geostationary satellites

Early Experimental QKD

- ● 1989 Bennett et al., J. Cryptolog. **5,** 3 (1992) 30cm faint laser pulses
- ● 1993 Muller et al., Europhys. Lett. **23,** 383 (1993) Polarization in fiber
- ● 1994 Townsend, Electron. Lett. **30,** 809 (1994) 10 km fiber, phase
- ● 1996 Muller et al., Appl. Phys. Lett. **70,** 793 (1997) Plug & play system
- ● 1999 Jennewein et al., Phys. Rev. Lett. **84,** 4729 (2000) Entanglement based QKD (360m) 1999 Tittel et al. Phys. Rev. Lett. **84,** 4737 (2000) Energy-time entanglement in fiber

The plug & play system (67km demo)

Figure 1. Picture of the p&p system.

Figure 2. Schematic of the p&p prototype.

Stucki, et al., NJP **4,** 41 (2002).

- ●Uses phase encoding
- ● Eliminates polarization correction by Faraday mirror
- ● Need to send "strong" pulse from Bob to Alice for coding

Increasing the distance

Differential Phase Shift Keying QKD

Takasue et al., NJP **7,** 232 (2005). Diamanti et al., quant-ph/0608110.

- ●Better use of clock period
- ●Achieved 1 GHz clock rate
- ●Using up-conversion single photon detectors
- ●@100 km 166 bits/s secure (?)

Polarization in Fiber

Peng et al., quantph/0607129 (2006)

●With decoy states achieved 103 km

With (Almost) Noise-Free Detectors

Rosenberg et al., Appl. Phys. Lett. **88**, 021108 (2006). Rosenberg et al., quant-ph/0607186

- ● Superconducting Transition Edge Sensors
	- ●Virtually zero noise
	- ●Poor timing \rightarrow slow clock cycle
- ● With decoy states achieved unconditionally secure key over 107 km

With Single Photons

- ●Single photons: unconditional security without decoy states
- ●Waks et al.: InAs quantum dots
- ●Alleaume et al.: Color centers in diamond

High Data-Rate Free-Space QKD

●690 kbit/s at 0.15 photons/pulse at Alice

Free-Space Long Distance

- ●Entanglement-based with source at Alice's
- \bullet 1m receiver telescope
- ●Typical loss -30 dB
- ●~30 raw key bits/s

Entanglement based FS QKD

- ●Dedicated real time entanglement based QKD system
- \bullet 630 bits/s *final* key

Marcikic et al., Appl. Phys. Lett. **89,** 101122 (2006)

IQC

CEIT

PI

The IQC-Perimeter Institute QKD Experiment

http://maps.google.com/maps/ms?msa=0&msid= 103964276287441386699.00000113448f5481181e2

Entangled Photon Pairs

- ● Parametric down-conversion: blue photon converts into pair of red photons
- ●Polarization entangled photon pairs via special geometry

Entangled Photon Pair Source

Send / Receive Equipment

Gregor Weihs, University of Innsbruck

Bob @ Perimeter Institute

universität
innsbruck

Alignment Spots

QBER

Time of Day

Key Rate

Corrected Key

- ●Raw key rate = 565 bits/sec
- ●Sifted key rate = 284 bits/sec
- ●Optimum final secret key rate = 124 bits/sec
- ●Actual final secret key rate = 85 bits/sec
- ● $OBER = 4.92%$
- \bullet Total key of 1,612,239 bits > 1.5MB generated
- \bullet Visibilities: H/V = 88.6%, +/- = 91.7%
- ●Residual error rate = 1.92 e-003 errors/bit