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Abstract. We give an elementary introduction to nonexponential decay and the quantum
Zeno effect. The introduction is addressed to students and researchers with no previous
knowledge on the subject. The prerequisites are the Schrödinger equation and the notion
of Von Neumann projective measurement.
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Fig. 1: Survival probability of a quantum decaying system.

1. Introduction

Fig. 1.

2. The quantum mechanical evolution

2.1. Evolution engendered by a Hermitian Hamiltonian

We start off by scrutinizing the quantum-mechanical evolution law, focusing
on its short-time features. Let H be the Hamiltonian of a quantum system
and |ψ0〉 = |ψ(t = 0)〉 its initial state. We shall set henceforth ~ = 1 and as-
sume that all functions to be dealt with are sufficiently regular to admit series
expansions. We shall focus on the “survival” amplitude A and probability p
of the system in state |ψ0〉 at time t:

A(t) = 〈ψ0|ψ(t)〉 = 〈ψ0|e−iHt|ψ0〉, (2.1)

p(t) = |A(t)|2 = |〈ψ0|e−iHt|ψ0〉|2. (2.2)

Let the system evolve for a short time δt. The Schrödinger equation yields

|ψ(δt)〉 = e−iHδt|ψ0〉 = |ψ0〉 − iH|ψ0〉δt−
1

2
H2|ψ0〉(δt)2 + O((δt)3)

=: |ψ0〉+ |δψ〉. (2.3)

The short-time expansion (2.3) yields

A(δt) = 1− i〈H〉0δt−
1

2
〈H2〉0(δt)2, (2.4)

p(δt) = 1− (δt)2

τ2
Z

+ O((δt)4), (2.5)
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Fig. 2: (a) Unitary evolution engendered by a Hermitian Hamiltonian. The
evolution takes place on the unit sphere: ||ψ(δt)|| = ||ψ(0)|| = 1. (b) Non-
unitary evolution engendered by a non-Hermitian Hamiltonian. The tip of
the state vector can leave the unit sphere (and enter the unit ball): ||ψ(δt)|| ≤
||ψ(0)|| = 1. In both cases, δψ is linear in δt.

where 〈· · ·〉0 := 〈ψ0| · · · |ψ0〉 and

τ−2
Z := 〈H2〉0 − 〈H〉20, (2.6)

τZ being the the so-called Zeno time [44]. In deriving (2.5) from (2.4) the
Hermitianity of H, ensuring the reality of 〈H〉0, played a primary role. Notice
that according to (2.4) the wave function evolves linearly away from the initial
state, but the survival probability (of remaining in the initial state) evolves
quadratically away from 1, due to (2.5). Recall that due to the unitarity
of the evolution, wave functions are always normalized to unity: ||ψ(t)|| =
||ψ(0)|| = 1, ∀t: the tip of the state vector never leaves the unit sphere. The
features of the short time evolution are pictorially displayed in Fig. 2(a).

2.2. Evolution engendered by a non-Hermitian Hamiltonian

Let us add a non-Hermitian part to the Hamiltonian:

H ′ = H − iV, (2.7)

where V is a real “optical” potential (taken to be position-independent for
simplicity). The new survival amplitude and probability read

A′(t) = 〈ψ0|ψ(t)〉 = e−V t〈ψ0|e−iHt|ψ0〉, (2.8)

p′(t) = e−2V t|〈ψ0|e−iHt|ψ0〉|2. (2.9)

A short-time expansion yields a linear behavior both for amplitude and prob-
ability

A′(δt) = 1− (V + i〈H〉0)δt− 1

2
(〈H2〉0 − V 2 − 2iV 〈H〉0)(δt)2 + O((δt)3),
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(2.10)

p′(δt) = 1− 2V δt+ O((δt)2) (2.11)

Optical potentials were frequently used in nuclear physics and quantum optics
[REFS]. They “eat up” probability and describe decay channels. See Fig.
2(b). The tip of the state vector can leave the unit sphere and enter the
unit ball: ||ψ(t)|| ≤ ||ψ(0)|| = 1. [It would leave the unit ball if the optical
potential −iV in (2.7) had the opposite sign.]

In physics, one tends to regards property (2.5) as more “fundamental”, as
it ensues from the Hermitianity of the Hamiltonian and the unitarity of the
evolution, that are regarded as very general principles. Yet optical potentials
have their own charm and play an important role in effective descriptions
of decaying and dissipative systems. Nowadays they have been overcome
by the rigorous mathematical framework of Gorini, Kossakowski, Sudarshan
and Lindblad [19] that describes the physics of dissipative quantum systems
[4, 5, 6].

2.3. Interaction Hamiltonian

Let the Hamiltonian be composed of a free and an interaction parts

H = H0 +Hint. (2.12)

We also require that the initial state be an eigenstate of the free Hamiltonian
and (as it is customary in quantum field theory) that the interaction be
off-diagonal:

H0|ψ0〉 = ω0|ψ0〉, 〈Hint〉0 = 0. (2.13)

In this interesting case the Zeno time reads

τ−2
Z = 〈H2

int〉0 =
∑
n

〈ψ0|Hint|ψn〉〈ψn|Hint|ψ0〉 (2.14)

and depends only on the interaction Hamiltonian. In the last expression |ψn〉
are the eigenstates of the free Hamiltonian and form a complete set

H0|ψn〉 = ωn|ψn〉. (2.15)

Formula (2.14) should be compared to the Fermi ”Golden Rule” [7]1, yielding
the inverse lifetime γ of a decaying quantum system:

γ = 2π
∑
f

|〈ψf |Hint|ψ0〉|2 δ(ωf − ω0), (2.16)

1Fermi considered (2.16) the second golden rule. If you are curious about the first one,
see pages 136, 148 of Nuclear Physics.
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Fig. 3: (a) The lifetime γ in Eq. (2.16) contains only “on-shell” contributions:
the delta function entails energy conservation ωf = ω0; ψf is in general (very)
degenerate. (b) The Zeno time τZ in Eq. (2.14) explores the whole Hilbert
space.

where the summation (integral) is over the final states and the continuum
limit is implied.

One comment. While (2.16) contains only “on-shell” contributions (be-
cause the delta function ensures energy conservation), the expression (2.14)
explores the whole Hilbert space. See Fig. 3. This is, I believe, the most
remarkable difference between the lifetime and the Zeno time.

3. Quantum Zeno effect with Von Neumann measurements

The most familiar formulation of the QZE makes use of Von Neumann mea-
surements, represented by one-dimensional projectors. Perform N measure-
ments at time intervals τ = t/N , in order to check whether the system is
still in its initial state |ψ0〉. After each measurement the system’s state is
“projected” back onto its initial state |ψ0〉 and the evolution starts anew ac-
cording to Schrödinger’s equation with initial condition |ψ0〉. [The system
can also be projected onto an orthogonal state |ψ⊥0 〉, with (quadratic) prob-
ability 1 − p(τ) = τ2/τ2

Z, according to Eq. (2.5). As we shall see, such an
event becomes increasingly unlikely as N increases.]

The survival probability p(N)(t) at the final time t = Nτ reads

p(N)(t) = p(τ)N = p(t/N)N

'
[
1− (t/NτZ)2

]N N large−→ exp(−t2/Nτ2
Z)

N→∞−→ 1, (3.17)

where we made use of the property (2.5). For large N the quantum mechan-
ical evolution is slowed down and in the N → ∞ limit (infinitely frequent
measurements) it is halted, so that the state of the system is “frozen” in its
initial state. This is the QZE. It is a consequence of the short-time behavior
(2.5).
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Fig. 4: Quantum Zeno effect for N = 5 “pulsed” Von Neumann measure-
ments. The dashed (full) line is the survival probability without (with)
measurements. The gray line is the interpolating exponential (3.18). As

N increases, p(N)(t) → 1 uniformly in [0, t]. The units on the abscissae are
arbitrarily chosen for illustrative purposes.

Observe that the survival probability after N pulsed measurements (t =
Nτ) is interpolated by an exponential law [37]

p(N)(t) = p(τ)N = exp(N log p(τ)) = exp(−γeff(τ)t), (3.18)

with an effective decay rate

γeff(τ) := −1

τ
log p(τ). (3.19)

For τ → 0 (N →∞) one gets from (2.5) p(τ) ' exp(−τ2/τ2
Z), so that

γeff(τ) ' τ/τ2
Z, τ → 0. (3.20)

The Zeno evolution for “pulsed” Von Neumann measurements is pictorially
represented in Figure 4.

4. The simplest example: two-level system

Consider a two-level system undergoing Rabi oscillations. This is the simplest
nontrivial quantum mechanical example, for it involves 2 × 2 matrices and
very simple algebra. One can think of an atom shined by a laser field whose
frequency resonates with one of the atomic transitions, or a neutron spin in
a magnetic field. The (interaction) Hamiltonian reads

H = Hint = Ωσ1 = Ω(|+〉〈−|+ |−〉〈+|) =

(
0 Ω
Ω 0

)
, (4.1)
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where Ω is a real number, σj (j = 1, 2, 3) the Pauli matrices and

|+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
(4.2)

are eigenstates of σ3. We are neglecting the energy difference between the
two states |±〉. Let the initial state be

|ψ0〉 = |+〉 =

(
1
0

)
, (4.3)

so that the evolution yields

|ψ(t)〉 = e−iHintt|ψ0〉 = cos(Ωt)|+〉 − i sin(Ωt)|−〉 =

(
cos Ωt
−i sin Ωt

)
. (4.4)

The survival amplitude (2.1) and probability (2.2) and the Zeno time (2.6)
or (2.14) read

A(t) = cos Ωt, (4.5)

P (t) = cos2 Ωt, (4.6)

τZ = Ω−1, (4.7)

respectively. The effective decay rate (3.19) if N measurements are performed
in time t reads

γeff(τ) = τΩ2. (4.8)

In this simple case, the approximation (3.20) is exact. See Figure 4.

5. Comments.

The QZE is ascribable to the following mathematical properties of the Schrödinger
equation: in a short time δτ ∼ 1/N , the phase of the wave function evolves
like O(δτ), while the probability changes by O(δτ2), so that

P (N)(t) '
[
1−O(1/N2)

]N N→∞−→ 1. (5.1)

Stated differently, the projection onto the inital state evolves “slowly” away
from unity. This is sketched in Fig. 5 and is a very general feature of the
Schrödinger equation, as well as of other “fundamental” evolution equations
in physics. Equations that do not have this feature (e.g. dissipative equations)
tend to be regarded as less fundamental, the consequence of approximations
of some sort.
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Fig. 5: Short-time evolution of phase and probability: δτ ∼ 1/N .

6. Unraveling a Von Neumann measurement

Von Neumann measurements

effective description of a measurement process.

external apparatus

mistery still there.

6.1. Mimicking the projection with a non-Hermitian Hamilto-
nian

Let us show that the action of a measuring apparatus (performing the Von
Neumann measurement) can be mimicked by a non-Hermitian Hamiltonian.
Consider the Hamiltonian (notation as in Sec. 4.)

Hint =

(
0 Ω
Ω −i2V

)
= −iV 1 + h · σ, h = (Ω, 0, iV )T , (6.2)

that yields Rabi oscillations of frequency Ω, but at the same time absorbs
away the |−〉 component of the state vector, performing in this way a “mea-
surement.” Due to the non-Hermitian features of this description, probabil-
ities are not conserved: we are concentrating our attention only on the |+〉
component.
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Fig. 6: Survival probability for a system undergoing Rabi oscillations in
presence of absorption (V = 0.4, 2, 10Ω). The gray line is the undisturbed
evolution (V = 0).

An elementary SU(2) manipulation yields the following evolution operator

e−iHintt = e−V t
[
cosh(ht)− ih · σ

h
sinh(ht)

]
, (6.3)

where h =
√
V 2 − Ω2 and we supposed V > Ω. The survival amplitude in

the initial state (4.3) reads

A(t) = 〈ψ0|e−iHIt|ψ0〉

= e−V t
[
cosh(

√
V 2 − Ω2t) +

V√
V 2 − Ω2

sinh(
√
V 2 − Ω2t)

]
=

1

2

(
1 +

V√
V 2 − Ω2

)
e−(V−

√
V 2−Ω2)t

+
1

2

(
1− V√

V 2 − Ω2

)
e−(V+

√
V 2−Ω2)t. (6.4)

Notice the presence of a slow and a fast decay. The survival probability
P (t) = |A(t)|2 is shown in fig. 6 for V = 0.4, 2, 10Ω.

As expected, probability is (exponentially) absorbed away as t → ∞.
Moreover, as V increases, the survival probability reads

P (t) '
(

1 +
Ω2

2V

)
exp

(
−Ω2

V
t

)
, (6.5)

the above expansion becoming valid very quickly, on a time scale of order
V −1. The effective decay rate γeff(V ) = Ω2/V becomes smaller, eventually
halting the “decay” (absorption) of the initial state in the V →∞ limit. This
yields an interesting example of QZE: a larger V entails a more “effective”
measurement of the initial state.

The global process described here can be viewed as “continuous” (neg-
ative result) measurements performed on the initial state |+〉. State |−〉 is
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continuously monitored with a response time 1/V : as soon as it becomes
populated, it is detected within a time 1/V . The “strength” V of the obser-
vation can be compared to the frequency τ−1 = (t/N)−1 of measurements
in the “pulsed” formulation. Indeed, for large values of V one gets from Eq.
(6.5)

γeff(V ) =
Ω2

V
=

1

τ2
ZV

, (6.6)

which, compared with Eq. (3.20), yields an interesting relation between con-
tinuous and pulsed measurements [14]

V ' 1/τ. (6.7)

6.2. Interaction with an external field yields a non-Hermitian
Hamiltonian

We now show that the non-Hermitian Hamiltonian (6.2) can be obtained
by considering the evolution engendered by a Hermitian Hamiltonian acting
on a larger Hilbert space and then restricting the attention to the subspace
spanned by {|+〉, |−〉}. Let

H = Ω(|+〉〈−|+ |−〉〈+|) +

∫
dω ω|ω〉〈ω|+

√
Γ

2π

∫
dω (|−〉〈ω|+ |ω〉〈−|),

(6.8)
which describes a two level system coupled to a one-dimensional “photon”
field in the rotating-wave approximation. Notice that the coupling is “flat”:
the two level system couples to all frequencies in the same way. The state of
the system at time t can be written as

|ψ(t)〉 = x(t)|+〉+ y(t)|−〉+

∫
dω z(ω, t)|ω〉 (6.9)

and the Schrödinger equation reads

iẋ(t) = Ωy(t),

iẏ(t) = Ωx(t) +

√
Γ

2π

∫
dω z(ω, t), (6.10)

iż(ω, t) = ωz(ω, t) +

√
Γ

2π
y(t).

By using the initial condition x(0) = 1 and y(0) = z(ω, 0) = 0 one obtains

z(ω, t) = −i
√

Γ

2π

∫ t

0
dτ e−iω(t−τ)y(τ) (6.11)
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and

iẏ(t) = Ωx(t)− i Γ

2π

∫
dω

∫ t

0
dτ e−iω(t−τ)y(τ) = Ωx(t)− iΓ

2
y(t). (6.12)

Therefore z(ω, t) disappears from the equations and we get two first order
differential equation for x and y. The only effect of the continuum is the
appearance of the imaginary frequency −iΓ/2. This is ascribable to the
“flatness” of the continuum [there is no form factor or frequency cutoff in the
interaction term of eq. (6.8)], which yields a purely exponential (Markovian)
decay of y(t).

In conclusion, the (reduced) dynamics in the subspace spanned by |+〉
and |−〉 reads

iẋ(t) = Ωy(t),

iẏ(t) = −iΓ
2
y + Ωx(t). (6.13)

Of course, this dynamics is not unitary, for probability flows out of the sub-
space, and is generated by the non-Hermitian Hamiltonian

H = Ω(|+〉〈−|+ |−〉〈+|)− iΓ
2
|−〉〈−| =

(
0 Ω
Ω −iΓ/2

)
(6.14)

This Hamiltonian is the same as (6.2) when one sets Γ = 4V . QZE is obtained
by increasing Γ: a larger coupling to the environment leads to a more effective
“continuous” observation on the system (quicker response of the measuring
apparatus), and as a consequence to a slower decay (QZE).

7. Genuine unstable systems and Zeno effects

We shall now discuss the primary role played by the form factors of the
interaction by making use of a quantum field theoretical framework. We start
by generalizing the two-level Hamiltonian (4.1) to N states |j〉 (j = 1, . . . , N)
with different energies

H0 = ω0|+〉〈+|+
N∑
j=1

ωj |j〉〈j| =


ω0 0 . . . 0
0 ω1 . . . 0
...

...
...

...
0 0 . . . ωN

 . (7.1)

and coupling

Hint =

N∑
j=1

gj(|+〉〈j|+ |j〉〈+|) =


0 g1 . . . gN
g1 0 . . . 0
...

...
...

...
gN 0 . . . 0

 (7.2)
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In order to obtain a truly unstable system we need a continuous spectrum,
so we consider the continuum limit

H = H0 +Hint = ω0|+〉〈+|+
∫
dω ω|ω〉〈ω|+

∫
dω g(ω)(|+〉〈ω|+ |ω〉〈+|).

(7.3)
The transition to a quantum field theoretical framework is an important
component of our analysis, as we shall see. As before, we take as initial state
|ψ0〉 = |+〉. The interaction of this normalizable state with the continuum of
states |ω〉 is responsible for its decay and depends on the form factor g(ω).
We reobtain the physics of two-level systems in the limit g2(ω) = Ω2δ(ω).

The Fourier-Laplace transform of the survival amplitude for this model
can be given a convenient analytic expression: notice that the transform of
the survival amplitude is the expectation value of the resolvent

A(E) =

∫ ∞
0

dt eiEtA(t) = 〈+|
∫ ∞

0
dt eiEte−iHt|+〉 = 〈+| i

E −H |+〉 (7.4)

and is defined for ImE > 0. By using twice the operator identity

1

E −H =
1

E −H0
+

1

E −H0
Hint

1

E −H (7.5)

one obtains

A(E) = 〈+|
[

i

E −H0
+

1

E −H0
Hint

i

E −H0
+

1

E −H0
Hint

1

E −H0
Hint

i

E −H

]
|+〉

=
i

E − ω0
+

1

E − ω0

∫
dω
|〈+|Hint|ω〉|2

E − ω A(E). (7.6)

In the above derivation we used the fact that Hint is completely off-diagonal
in the eigenbasis of H0, {|+〉, |ω〉}, which is a resolution of the identity

|+〉〈+|+
∫
dω |ω〉〈ω| = 1. (7.7)

The algebraic equation (7.6) can be solved and gives

A(E) =
i

E − ω0 − Σ(E)
, (7.8)

where the self-energy function Σ(E) is related to the form factor g(ω) by a
simple integration

Σ(E) =

∫
dω
|〈+|Hint|ω〉|2

E − ω =

∫
dω

g2(ω)

E − ω . (7.9)
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By inverting eq. (7.4) we finally get

A(t) =

∫
B

dE

2π
e−iEtA(E) =

i

2π

∫
B
dE

e−iEt

E − ω0 − Σ(E)
, (7.10)

the Bromwich path B being a horizontal line ImE =constant> 0 in the half
plane of convergence of the Fourier-Laplace transform (upper half plane).

We consider now the case of an unstable system. The initial state has
energy ω0 > ωg (ωg being the lower bound of the continuous spectrum of
the Hamiltonian H) and is therefore embedded in the continuous spectrum
of H. If −Σ(ωg) < ω0 (which happens for sufficiently smooth form factors
and small coupling), the resolvent is analytic in the whole complex plane cut
along the real axis (continuous spectrum of H) [57, 13]. On the other hand,
there exists a pole Epole located just below the branch cut in the second
Riemann sheet, solution of the equation

Epole − ω0 − ΣII(Epole) = 0, (7.11)

ΣII being the determination of the self-energy function in the second sheet.
The pole has a real and imaginary part

Epole = ω0 + δω0 − iγ/2 (7.12)

given by

δω0 = Re ΣII(Epole) ' Re Σ(ω0 + i0+) = P

∫
dω

g2(ω)

ω0 − ω
, (7.13)

γ = −2 Im ΣII(Epole) ' −2 Im Σ(ω0 + i0+) = 2πg2(ω0), (7.14)

up to fourth order in the coupling constant. One recognizes the second-order
energy shift δω0 and the celebrated Fermi “golden” rule γ [45]. The survival
amplitude has the general form

A(t) = Apole(t) +Acut(t), (7.15)

where

Apole(t) =
e−i(ω0+δω0)t−γt/2

1− Σ′II(Epole)
, (7.16)

and Acut is the branch-cut contribution.

Acut(t) =
i

2π

∫
cut
dE

e−iEt

E − ω0 − Σ(E)
, (7.17)

At intermediate times, the pole contribution dominates the evolution and

P (t) ' |Apole(t)|2 = Ze−γt, Z =
∣∣1− Σ′II(Epole)

∣∣−2
, (7.18)
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where Z, the intersection of the asymptotic exponential with the t = 0 axis,
is the wave function renormalization.

Notice that, in order to obtain a purely exponential decay, one neglects
all branch cut and/or other contributions from distant poles and considers
only the contribution of the dominant pole. In other words, one does not
look at the rich analytical structure of the propagator and retains only its
dominant polar singularity. In this case the self-energy function becomes a
constant (equal to its value at the pole), namely

Σ(E) −→ ΣWW(E) =
1

E − ω0 − ΣII(Epole)
=

1

E − Epole
, (7.19)

where in the last equality we used the pole equation (7.11). This is the cele-
brated Weisskopf-Wigner approximation [8] and yields a purely exponential
behavior, A(t) = exp(−iEpolet), without short- and long-time corrections.

8. Conclusions.
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