QUANTUM INFORMATION with light and atoms

Lecture 2

Alex Lvovsky

MAKING QUANTUM STATES OF LIGHT

- **1. Photons**
- **2. Biphotons**
- **3. Squeezed states**
- **4. Beam splitter**
- **5. Conditional measurements**

Beam splitter transformation (Heisenberg picture)

•**Quadrature transformation**

$$
\begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} = \begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} \hat{a}'_1 \\ \hat{a}'_2 \end{pmatrix}
$$

where t^2 is the beam splitter transmission, r^2 reflection. $|t|^2 + |r|^2 = 1$.

• If *t* and *r* are real, we can assign $t = \cos \theta$; $r = \sin \theta$;

$$
\begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \hat{a}'_1 \\ \hat{a}'_2 \end{pmatrix}
$$

Also valid for positions, momenta

$$
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix}; \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} p'_1 \\ p'_2 \end{pmatrix}
$$

 \rightarrow Beam splitter transformation = rotation in the phase space \Rightarrow **entanglement**

Problem: Show that a beam splitter acting on a pair of coherent states will generate a pair of coherent states

nation Scie University of C

Example: Einstein-Podolsky-Rosen state

•**State preparation**

- Overlap *X*-squeezed $(\langle \delta x_1^2 \rangle < 1/2)$ and *P*-squeezed vacuum states on a symmetric beam splitter $\left(\left<\delta x_1^2\right><1$ / 2) $\left(\left< \delta p_2^2 \right> < 1/2 \right)$
- •Beam splitter transformation:

$$
\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} X_2 - X_1 \\ X_2 + X_1 \end{pmatrix}; \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} P_2 - P_1 \\ P_2 + P_1 \end{pmatrix}
$$

After beam splitter:

•

$$
\langle \delta(x_1 - x_2)^2 \rangle
$$
 < 1/2; $\langle \delta(p_1 + p_2)^2 \rangle$ < 1/2

- • Both positions and momenta are nonclassically correlated.
- •Entangled state generated!
- • This states approximates the original Einstein-Podolsky-Rosen state.

Joint wave function $\Psi(x_{1}, x_{2})$

 x_2

 \mathcal{X}_1

By the way: the original EPR paradox

- • **The ideal Einstein-Podolsky-Rosen state**
	- •• In position representation: $\Psi_{\text{EPR}}(x_1, x_2) = \delta(x_1 - x_2)$
	- •• In momentum representation: $\Psi_{\text{EPR}}(p_1, p_2) = \delta(p_1 + p_2)$ $+ x_2$

 x_1

*x*1

 p_1

 x_2

 $\Psi(x_1, x_2)$

*p*₂

 $\Psi(p_1, p_2)$

Problem: obtain the position representation wave function from the momentum representation

•**If shared between Alice and Bob:**

- If Alice measures position x_1
	- \rightarrow Bob receives a position eigenstate $|x_2\rangle$ = $|x_1\rangle$
- If Alice measures momentum p_{1}^{\dagger} \rightarrow Bob receives a momentum eigenstate $|p_2\rangle$ = $|-p_1\rangle$
- **Alice can create two mutually incompatible physical realities at a remote location**

Theory: Einstein, Podolsky, Rosen, PRA **47**, 777 (1935) Experiment: Z.Y.Ou et al., PRL 68, 3663 (1992)

Beam splitter transformation (Schrödinger picture)

•**Photon number transformation**

$$
|m,n\rangle \rightarrow \sum_{j,k=0}^{m,n} \sqrt{\frac{(j+k)!(m+n-j-k)!}{m!n!}} {m \choose j} {n \choose k} (-1)^k t^{n+j-k} r^{m-j+k} |m+n-j-k, j+k\rangle
$$

m

n

 \bullet **Simplest example: splitting a photon**

$$
|1\rangle \rightarrow t|1\rangle_{A}|0\rangle_{B} - r|0\rangle_{A}|1\rangle_{B}
$$

n'

m'

Example:

Tomography of a dual-rail qubit

- •**Photon hits a beam splitter** \rightarrow **a two-mode qubit is generated** $\left|1\right\rangle \rightarrow t \left|1\right\rangle_A \left|0\right\rangle_B - r \left|0\right\rangle_A \left|1\right\rangle_B$
- • \bullet Measure quadratures X_A and X_B via homodyne detectors
- \bullet **Phase/dependent quadrature statistics** [→] **state reconstruction**

Example: Tomography of a dual-rail qubit (…continued)

- •**Probability distributions** $pr(X_A, X_B)$
	- •**Serve as marginal distributions for the 4-D Wigner function**
	- •**Entanglement** [→] **Nonclassical, phase-dependent correlations**

 \bullet **Probability distributions** $pr(X_A, X_B)$ **for all** θ_A, θ_B → **quantum state reconstruction**

Why do we see such distributions?

•**If no beam splitter is present**

- •Alice measures the single-photon state, Bob measures the vacuum state
- •• Measurements are uncorrelated \rightarrow distributions are uncorrelated
- •No entanglement
- \bullet • No information about relative phase θ_A - θ_B

Why do we see such distributions?

•**If beam splitter is present**

- \bullet • Alice and Bob measure the same quadrature $(\theta_A - \theta_B = 0 \text{ or } p)$ \rightarrow uncorrelated distribution rotates by 45 $^{\circ}$
- \bullet • Alice and Bob measure different quadratures (θ_A - θ_B = p/2) \rightarrow distribution remains uncorrelated

Tomography of an optical qubit

S. Babichev, J. Appel, A. I. Lvovsky, PRL **92**, 193601 (2004)

•**Density matrix**

Results

- •**Serve as marginal distributions for the 4-D Wigner function**
- •**Entanglement** → **Nonclassical, phase-dependent correlations**

First complete (not postselected) reconstruction of an optical qubit

Another example: Hong-Ou-Mandel dip

- • **Two photons "colliding" on a beam splitter will stick together** $|1{,}1\rangle$ \rightarrow $\big(|2{,}0\rangle{-}|0{,}2\rangle\big)/\sqrt{2}$
- • **Hong-Ou-Mandel effect: correlation count in the beam splitter output vanishes when the two photons arrive simultaneously.**

at the University of Calg

Beam splitter model of absorption

- • **The problem**
	- \bullet **A quantum state of light propagates through an attenuator. What is the transmitted state?**

Beam splitter model of absorption

•**The solution**

- \bullet **Replace the absorber with a beam spltter.**
- \bullet **The second input is vacuum**

- •**• Beam splitter output** $|\Psi\rangle$ **may me entangled**
- •**Mode 2 in the beam splitter output is lost**
- \bullet • To find $\hat{\rho}_{out}$, trace over the lost mode in the beam splitter output *out*

$$
\hat{\rho}_{out} = \text{Tr} \, {}^{}_2 \! \left| \Psi \right\rangle \! \left\langle \Psi \right|
$$

Beam splitter model of absorption

0

2

•**The solution**

- •**Replace the absorber with a beam spltter.**
- •**The second input is vacuum**

Suppose you have a squeezed state with $\langle x^2 \rangle = \frac{1}{A}$, $\langle p \rangle$ How will these parameters change after propagating through a 50% absorber? $\ket{\text{2}} = \frac{1}{4}, \left\langle p^2 \right\rangle = 1.$

•**In terms of Wigner functions**

 $|\psi_{in}|$

•• Beam splitter input Wigner function: $W_{|\psi\rangle|0\rangle} = W_{|\psi\rangle}(x_1, p_1)W_{|0\rangle}(x_2, p_2)$.

 $|\Psi\rangle = \hat{B}$

 $B|\psi_{\,in}\rangle\hspace{-0.1cm}|0\rangle$

1

- •• To find the beam splitter output Wigner function $(W_{\vert \Psi \rangle}(x_1, p_1, x_2, p_2)$ **apply phase-space rotation.**
- •**To find the Wigner finction of mode 1, integrate over mode 2:**

$$
W_{out}(x_1,p_1)=\int_{-\infty}^{+\infty} W_{|\Psi\rangle}(x_1,p_1,x_2,p_2)dx_2dp_2.
$$

Institute for **Quantum Information S**

MAKING QUANTUM STATES OF LIGHT

- **1. Photons**
- **2. Biphotons**
- **3. Squeezed states**
- **4. Beam splitter**
- **5. Conditional measurements**

Conditional preparation of a photon

- • **Parametric down-conversion**
	- •**"Red" photons are always born in pairs**
	- • **Photon detection in one emission channel**
		- → **there must be a photon in the other channel as well**

Experience Not a single photon "on demand"

To date, this is the only method which provides a single photon with a high efficiency in a certain spatiotemporal mode

Schrödinger cat

What does it mean in optics?

• **Coherent superposition of two coherent states**

 $\langle \text{cat}_\pm \rangle = |\alpha\rangle \pm |-\alpha|$

- \bullet **Useful for quantum teleportation quantum computation, and error correction**
- \bullet **Fundamentally important**

Problem. Calculate these Wigner functions

• **Compare: incoherent superposition of two coherent states**

> $\hat{\rho}$ $\hat{\mathcal{O}} = \left| \textit{\textbf{a}} \right\rangle \!\!\left\langle \textit{\textbf{a}} \right| \pm \left| -\textit{\textbf{a}} \right\rangle \!\!\left\langle -\textit{\textbf{a}} \right|$

•**Boring, classical state**

Schrödinger cat How to make one?

•**Easy for small** α**'s**

$$
|\alpha\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \alpha_2|2\rangle + \alpha_3|3\rangle + \dots
$$

\n $|\alpha\rangle = \alpha_0|0\rangle - \alpha_1|1\rangle + \alpha_2|2\rangle - \alpha_3|3\rangle + \dots$
\nhigh-number terms

Schrödinger cat

How to make one?

[A. Ourjoumtsev *et al., Science* **312**, 83 (2006) J. S. Neergaard-Nielsen *et al.,* PRL **97**, 083604 (2006) K. Wakui *et al.,* quant-ph/0609153]

- • **Making a squeezed single-photon state**
	- •• Create a squeezed state $|\psi_s\rangle = \beta_0|0\rangle + \beta_2|2\rangle + \beta_4|4\rangle + ...$
	- •• Subtract a photon $\hat{a}|\psi_{s}\rangle = \sqrt{2\beta_2}|1\rangle + 2\beta_4|3\rangle + ...$

Summary to part 2: Classification of quantum state preparation methods

• **"On demand": State is readily available when required by the user** Example: photon from a quantum dot

•**"Heralded":**

> **State produced randomly; system provides user with a classical signal when the state is produced** Example: heralded single photon

• **"Postselected":**

State is not known to have been produced until it is detectedExample: photon pair from a down-converter

Postselected + conditional measurement = Heralded (maybe) Quantum Information Sci Heralded + memory = On demand

QUANTUM REPEATER

and memory for light

Quantum cryptography: here and now

Secure communication up to 100-150 km

- •**Free space**
- •**Optical fibers**

Commercialization begins

- •**Id Quantique (Switzerland)**
- •**MagiQ (Boston)**
- •**BBN Technologies (Boston)**

Metropolitan quantum communication networks

- •**Geneve**
- •**Boston**
- •**Vienna**
- •**Calgary**

Problems with quantum cryptography

- • **Preparation of single photons**
	- •**Must ensure absence of two-photon pulses**
- • **Losses in optical fibers**
	- •**0.2-0.3 dB/km: half of photons are lost over 10-15 kilometers.**
	- • **Example: Dubai to Kish, 300 km, only 1 in 30,000,000 photons will reach destination**
	- **Can't use amplifiers**
- • **"Dark counts" of detectors**
	- \bullet **Sometimes a photon detector will "click" without a photon**
	- •**Dark clicks cause errors**
	- \bullet **Too many errors → can't detect eavesdropping**

Suppose Alice wants to send a photon to Bob…

The photon is likely to get lost on its way $\boxed{\sum_{i=1}^{n}$

Quantum relay

 If Alice and Bob shared an entangled resource, \bullet **Alice could** *teleport* **her photon to Bob But long-distance entanglement is difficult to createQuantum Information Science** at the University of Calg

Quantum relay

Long-distance entanglement can be created by *entanglement swapping* **A Bell measurements on modes 2 and 4 entangles modes 1 and 4**

Quantum relay

entangled

Long-distance entanglement can be created by *entanglement swapping* **but to succeed, all links must work simultaneously. E**

→ success probability still decreases exponentially with distance.

The role of memory

•**But if we had quantum memory,**

- • **entanglement in a link could be stored… until entanglement in other links has been created, too.**
- \bullet **Bell-measurement on adjacent quantum memories... will create the desired long-distance entanglement.**
- •**Alice can teleport her photon to Bob**

Quantum repeater

- • **This technology is called** *quantum repeater*
	- •**Initial idea: H. Briegel** *et al.,* **1998**
	- •**In application to EIT and quantum memory: L.M. Duan** *et al.,* **2001**
- • Quantum memory for light is essential for long-distance quantum communications.

By the way…

- • **Quantum memory for light is also useful in quantum computing**
	- •**Photon makes an excellent qubit… but does not like to stay put**
	- \bullet **Any computer, quantum or classical, needs memory**

ELECTROMAGNETICALLY INDUCED TRANSPARENCY

and memory for light

What is EIT?

Quantum interference effect in atoms with Λ**-shaped level structure**

What will happen to the signal field when we send it through an EIT medium?

Narrow transparency window on resonance.

• Light propagates through an otherwise opaque medium.

We can enormously reduce the group velocity

• Group velocity is proportional to the control field intensity

Institute for **Quantum Information S** at the University of

EIT for quantum memory

- • **The idea**
	- \bullet **Turning the control field off will reduce the group velocity to zero**
	- • **Quantum information contained in the pulse is stored in a collective atomic ground state superposition**
	- \bullet **Turning the control field back on will retrieve the pulse in the original quantum state**

EIT for quantum memory

EIT in our lab

EIT-based memory: practical limitations

- \bullet **EIT window not perfectly transparent → part of the pulse will be absorbed**
- \bullet **Memory lifetime limited by atoms colliding, drifting in and out the interaction region**

Institute for

Quantum Information Science

at the University of Calgan

Storage of squeezed vacuum The setup

Storage of squeezed vacuum The initial state

Storage of squeezed vacuum The retrieved stateJ. Appel et al., PRL **100**, 093602 (2008)

Institute for

Ouantum Information S

at the University of

Quadrature noise

- •**Maximum squeezing: 0.21±0.04 dB**
- •**Squeezing observed in the retrieved state!**

EIT for quantum memory: state of the art

The "holy grail"

- •Store and retrieve arbitrary states of light for unlimited time
- •State after retrieval must be identical to initial

Existing work

- •L. Hau, 1999: slow light
- •M. Fleischauer, M. Lukin, 2000: original theoretical idea for light storage
- •M. Lukin, D. Wadsworth *et al.*, 2001: storage and retrieval of a classical state
- •A. Kuzmich *et al.*, M. Lukin *et al.*, 2005: storage and retrieval of single photons
- •M. Kozuma *et al.*, A. Lvovsky *et al.*, 2007: memory for squeezed vacuum

Existing benchmarks

- •Memory lifetime: up to milliseconds in rubidium, up to seconds in solids
- Memory efficiency: up to 50 % in rubidium, lower for solids
- Things get much worse when we attempt to store nonclassical states of light

Ouantum Information Scie

QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements

An optical C-NOT gate

•**What we need**

An optical C-NOT gate

•**Nonlinear phase shift**

 $|0\rangle|0\rangle$ \rightarrow $|0\rangle|0$ $|0\rangle|1\rangle$ \rightarrow $|0\rangle|1$ $1\rangle \vert 0\rangle$ \rightarrow $\vert 1\rangle \vert 0$ $1\rangle|1\rangle \rightarrow -|1\rangle|1$

•**Problem**

 \bullet **No materials that exhibit optical nonlinearity at the single-photon intensity level**

QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements

Nonlinear optics with EIT

• **Basic idea: exploit steep dispersion curve to produce large cross-phase modulation**

 \bullet **Small change in 2-photon detuning → Large change in transmitted signal phase**

N-type scheme

•**EIT on signal field due to |1** 〉**|2** 〉**|3** 〉

1 Schmidt, Imamoglu. Opt. Lett. **23**, pages 1936-1939 (1996)

N-scheme

Schmidt, Imamoglu. Opt. Lett. **23**, 1936 (1996)

 $|3\rangle$

N-scheme [continued]

•**Problem with N-scheme:**

- • **Only signal field experiences slowdown.**
- • **For pulses, this is a severe limitation.**
- \bullet **Solution:**
	- • **Slow down induction pulse via another EIT system**
		- • Lukin, Imamoglu (2001): use another atomic species (e.g. 85Rb)
		- • Wang, Marzlin, Sanders (2006): use double EIT in the same atom

Institute for

Quantum Information Science

at the University of Calga

QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements

Non-deterministic phase gate: implementation with the beam splitter

•**General beam splitter transformation**

$$
|m,n\rangle \rightarrow \sum_{j,k=0}^{m,n} \sqrt{\frac{(j+k)!(m+n-j-k)!}{m!n!}} {m \choose j} {n \choose k} (-1)^k t^{n+j-k} r^{m-j+k} |m+n-j-k, j+k\rangle
$$

Entangles input modes Entanglement very complicated Conditional measurement and/or postselection are required to implement computation gates

⇒ **Linear-optical quantum computing is non-deterministic**

Original idea: E. Knill, R. Laflamme, and G. J.Milburn, Nature **409,** 46 (2001).

Non-deterministic phase gate: implementation with the beam splitter

•**Beam splitter with reflectivity 1/3**

$$
(r=\sqrt{\frac{1}{3}},t=\sqrt{\frac{2}{3}})
$$

 Postselect on events in which the number of photons in the reflected channel is the same as that in the corresponding incident channel

m

n

n'

m'

•**Neglect all other events**

 \bullet

$$
|0,0\rangle \rightarrow |0,0\rangle
$$

\n
$$
|1,0\rangle \rightarrow \sqrt{\frac{1}{3}}|1,0\rangle
$$

\n
$$
|0,1\rangle \rightarrow -\sqrt{\frac{1}{3}}|0,1\rangle
$$

\n
$$
|1,1\rangle \rightarrow \frac{1}{3}|1,1\rangle
$$

\n
$$
|1,1\rangle \rightarrow \frac{1}{3}|1,1\rangle
$$

\n**Phase gate implemented!**
\n
$$
|1,1\rangle \rightarrow -\frac{1}{3}|1,1\rangle
$$

\n
$$
|1,1\rangle \rightarrow -\frac{1}{3}|1,1\rangle
$$

E Non-deterministic (probability = 1/3 per photon) Quantum Information

→ Need to attenuate horizontal photons, too

Non-deterministic phase gate [continued]

•**Full scheme**

- \bullet **Properties**
	- \bullet **Works conditioned on detecting 1 photon in each output**
	- **Works with probability 1/9**
	- \bullet **Would be useful for quantum computing if we had non-demolition detection of photons**

Non-deterministic phase gate Experimental implementation

- • **The setup**
	- • **Partially-polarizing beam splitters used to simplify mode-matching**
	- • **Operation of the gate as a Bell-state analyzer verified**

N. K. Langford et al., Phys. Rev. Lett. **95**, 210504 (2005) N. Kiesel et al., Phys. Rev. Lett. **95**, 210505 (2005) R. Okamoto et al., Phys. Rev. Lett. **95**, 210505 (2005)

Another example: Conditional preparation of multi-photon entanglement

POI

BS

- • **Conditioned on 4-photon coincidence (postselected preparation)**
	- Start from 2 pairs $|HV\rangle |VH\rangle$
	- Photon that fires T comes from "first pair"
		- \Rightarrow first pair must be $|HV\rangle$
		- \Rightarrow second pair must be $|VH\rangle$
	- Photons transmitted and reflected from BS must be of opposite polarizations
	- \bullet • Photons detected by D_1 and D_2 must be of the same polarization
	- The state incident on D_1 , D_2 and D_3 is either *HHV* \rangle or $|VVH\rangle$
	- These possibilities are indistinguishable

 \Rightarrow The output state is a coherent superposition

We know the state has been generated only after it's detected

•**Funding:**

- \bullet **CIAR**
- \bullet **NSERC**
- \bullet **AIF**
- •**CFI**
- •**Quantum***Works*

Ph.D. positions available

http://qis.ucalgary.ca/quantech/

