QUANTUM INFORMATION with light and atoms

Lecture 2

Alex Lvovsky

MAKING QUANTUM STATES OF LIGHT

- 1. Photons
- 2. Biphotons
- 3. Squeezed states
- 4. Beam splitter
- 5. Conditional measurements

Beam splitter transformation (Heisenberg picture)

Quadrature transformation

$$\begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} = \begin{pmatrix} t & r \\ -r & t \end{pmatrix} \begin{pmatrix} \hat{a}_1' \\ \hat{a}_2' \end{pmatrix}$$

where t^2 is the beam splitter transmission, r^2 reflection. $|t|^2 + |r|^2 = 1$.

• If *t* and *r* are real, we can assign $t = \cos \theta$; $r = \sin \theta$;

$$\begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \hat{a}_1' \\ \hat{a}_2' \end{pmatrix}$$

Also valid for positions, momenta

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix}; \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} p'_1 \\ p'_2 \end{pmatrix}$$

 \rightarrow Beam splitter transformation = rotation in the phase space \Rightarrow entanglement

Problem: Show that a beam splitter acting on a pair of coherent states will generate a pair of coherent states

nation Science University of Calgary

Example: Einstein-Podolsky-Rosen state

State preparation

- Overlap X-squeezed $(\langle \delta x_1^2 \rangle < 1/2)$ and P-squeezed $(\langle \delta p_2^2 \rangle < 1/2)$ vacuum states on a symmetric beam splitter
- Beam splitter transformation:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} X_2 - X_1 \\ X_2 + X_1 \end{pmatrix}; \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} \rightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} P_2 - P_1 \\ P_2 + P_1 \end{pmatrix}$$

$$\left< \delta(x_1 - x_2)^2 \right> < 1/2; \left< \delta(p_1 + p_2)^2 \right> < 1/2$$

- Both positions and momenta are nonclassically correlated.
- Entangled state generated!
- This states approximates the original Einstein-Podolsky-Rosen state.

Joint wave function $\Psi(p_1, p_2)$

Joint wave function $\Psi(x_1, x_2)$

 x_2

 X_1

By the way: the original EPR paradox

- The ideal Einstein-Podolsky-Rosen state
 - In position representation: $\Psi_{EPR}(x_1, x_2) = \delta(x_1 x_2)$
 - In momentum representation: $\Psi_{EPR}(p_1, p_2) = \delta(p_1 + p_2)$

 x_2

 $\Psi(x_1,x_2)$

 p_2

 $\Psi(p_1,p_2)$

 X_1

 p_1

Problem: obtain the position representation wave function from the momentum representation

• If shared between Alice and Bob:

- If Alice measures position *x*₁
 - \rightarrow Bob receives a position eigenstate $|x_2\rangle = |x_1\rangle$
- If Alice measures momentum $p_1 \rightarrow$ Bob receives a momentum eigenstate $|p_2\rangle = |-p_1\rangle$
- Alice can create two mutually incompatible physical realities at a remote location

Theory: Einstein, Podolsky, Rosen, PRA **47**, 777 (1935) Experiment: Z.Y.Ou et al., PRL 68, 3663 (1992)

Beam splitter transformation (Schrödinger picture)

Photon number transformation

$$|m,n\rangle \rightarrow \sum_{j,k=0}^{m,n} \sqrt{\frac{(j+k)!(m+n-j-k)!}{m!n!}} {m \choose j} {n \choose k} (-1)^k t^{n+j-k} r^{m-j+k} |m+n-j-k,j+k\rangle$$

m

 $|n\rangle$

• Simplest example: splitting a photon

$$|1\rangle \rightarrow t|1\rangle_A |0\rangle_B - r|0\rangle_A |1\rangle_B$$

 $|m'\rangle$

|n'
angle

Example:

Tomography of a dual-rail qubit

- Photon hits a beam splitter \rightarrow a two-mode qubit is generated $|1\rangle \rightarrow t |1\rangle_A |0\rangle_B - r |0\rangle_A |1\rangle_B$
- Measure quadratures X_A and X_B via homodyne detectors
- Phase/dependent quadrature statistics → state reconstruction

Example: Tomography of a dual-rail qubit (...continued)

- **Probability distributions pr(X_A, X_B)**
 - Serve as marginal distributions for the 4-D Wigner function
 - Entanglement → Nonclassical, phase-dependent correlations

• Probability distributions $pr(X_A, X_B)$ for all $\theta_A, \theta_B \rightarrow$ quantum state reconstruction

Why do we see such distributions?

• If no beam splitter is present

- Alice measures the single-photon state, Bob measures the vacuum state
- Measurements are uncorrelated \rightarrow distributions are uncorrelated
- No entanglement
- No information about relative phase $\theta_A \theta_B$

Why do we see such distributions?

• If beam splitter is present

- Alice and Bob measure the same quadrature $(\theta_A \theta_B = 0 \text{ or } p)$ \rightarrow uncorrelated distribution rotates by 45°
- Alice and Bob measure different quadratures ($\theta_A \theta_B = p/2$) \rightarrow distribution remains uncorrelated

Tomography of an optical qubit

S. Babichev, J. Appel, A. I. Lvovsky, PRL 92, 193601 (2004)

• Density matrix

Results

- Serve as marginal distributions for the 4-D Wigner function
- Entanglement → Nonclassical, phase-dependent correlations

First complete (not postselected) reconstruction of an optical qubit

Another example: Hong-Ou-Mandel dip

- Two photons "colliding" on a beam splitter will stick together ۲ $|1,1\rangle \rightarrow (|2,0\rangle - |0,2\rangle)/\sqrt{2}$
- Hong-Ou-Mandel effect: correlation count in the beam splitter output • vanishes when the two photons arrive simultaneously.

at the University of Ca

Beam splitter model of absorption

- The problem
 - A quantum state of light propagates through an attenuator. What is the transmitted state?

Beam splitter model of absorption

The solution

- Replace the absorber with a beam spltter.
- The second input is vacuum

- Beam splitter output $|\Psi
 angle\,$ may me entangled
- Mode 2 in the beam splitter output is lost
- To find $\hat{\rho}_{out}$, trace over the lost mode in the beam splitter output

$$\hat{\rho}_{out} = \mathrm{Tr}_2 |\Psi\rangle\langle\Psi|$$

Beam splitter model of absorption

• The solution

• Replace the absorber with a beam spltter.

2

• The second input is vacuum

pltter. Suppose you have a squeezed state with $\langle x^2 \rangle = \frac{1}{4}, \langle p^2 \rangle = 1$. How will these parameters change after propagating through a 50% absorber?

• In terms of Wigner functions

 Ψ_{in}

• Beam splitter input Wigner function: $W_{|\psi\rangle|0\rangle} = W_{|\psi\rangle}(x_1, p_1)W_{|0\rangle}(x_2, p_2).$

 $\left[\Psi\right\rangle = \hat{B}|\psi_{in}\rangle|0\rangle$

- To find the beam splitter output Wigner function $W_{|\Psi\rangle}(x_1, p_1, x_2, p_2)$ apply phase-space rotation.
- To find the Wigner function of mode 1, integrate over mode 2:

$$W_{out}(x_1, p_1) = \int_{-\infty}^{+\infty} W_{|\Psi\rangle}(x_1, p_1, x_2, p_2) dx_2 dp_2.$$

Quantum Information Science at the University of Calgary

MAKING QUANTUM STATES OF LIGHT

- 1. Photons
- 2. Biphotons
- 3. Squeezed states
- 4. Beam splitter
- 5. Conditional measurements

Conditional preparation of a photon

- Parametric down-conversion
 - "Red" photons are always born in pairs
 - Photon detection in one emission channel
 - \rightarrow there must be a photon in the other channel as well

- Not a single photon "on demand"
- To date, this is the only method which provides a single photon with a high efficiency in a certain spatiotemporal mode

Schrödinger cat

What does it mean in optics?

• Coherent superposition of two coherent states

 $|\operatorname{cat}_{\pm}\rangle = |\alpha\rangle \pm |-\alpha\rangle$

- Useful for quantum teleportation quantum computation, and error correction
- Fundamentally important

Problem. Calculate these Wigner functions

 Compare: incoherent superposition of two coherent states

 $\hat{\rho} = |lpha \rangle \langle lpha | \pm | - lpha \rangle \langle - lpha |$

Boring, classical state

Schrödinger cat How to make one?

• Easy for small α's

$$|\alpha\rangle = \alpha_{0}|0\rangle + \alpha_{1}|1\rangle + \alpha_{2}|2\rangle + \alpha_{3}|3\rangle + \dots \text{ neglect}$$

$$|-\alpha\rangle = \alpha_{0}|0\rangle - \alpha_{1}|1\rangle + \alpha_{2}|2\rangle - \alpha_{3}|3\rangle + \dots \text{ high-number terms}$$

Schrödinger cat

How to make one?

[A. Ourjoumtsev *et al., Science* 312, 83 (2006)
J. S. Neergaard-Nielsen *et al.*, PRL 97, 083604 (2006)
K. Wakui *et al.*, quant-ph/0609153]

- Making a squeezed single-photon state
 - Create a squeezed state $|\psi_s\rangle = \beta_0 |0\rangle + \beta_2 |2\rangle + \beta_4 |4\rangle + \dots$
 - Subtract a photon $\hat{a}|\psi_s\rangle = \sqrt{2}\beta_2|1\rangle + 2\beta_4|3\rangle + \dots$

Summary to part 2: Classification of quantum state preparation methods

- "On demand":
 State is readily available
 when required by the user
 Example: photon from a quantum dot
- "Heralded":

State produced randomly; system provides user with a classical signal when the state is produced Example: heralded single photon

"Postselected":

State is not known to have been produced until it is detected Example: photon pair from a down-converter

Postselected + conditional measurement = Heralded (maybe) Heralded + memory = On demand

QUANTUM REPEATER

and memory for light

Quantum cryptography: here and now

Secure communication up to 100-150 km

- Free space
- Optical fibers

Commercialization begins

- Id Quantique (Switzerland)
- MagiQ (Boston)
- BBN Technologies (Boston)

Metropolitan quantum communication networks

- Geneve
- Boston
- Vienna
- Calgary

Problems with quantum cryptography

- Preparation of single photons
 - Must ensure absence of two-photon pulses
- Losses in optical fibers
 - 0.2-0.3 dB/km: half of photons are lost over 10-15 kilometers.
 - Example: Dubai to Kish, 300 km, only 1 in 30,000,000 photons will reach destination
 - Can't use amplifiers
- "Dark counts" of detectors
 - Sometimes a photon detector will "click" without a photon
 - Dark clicks cause errors
 - Too many errors

 → can't detect eavesdropping

Suppose Alice wants to send a photon to Bob...

Quantum relay

If Alice and Bob shared an entangled resource,
 Alice could *teleport* her photon to Bob
 But long-distance entanglement is difficult to create www.stitute.for

Quantum relay

Long-distance entanglement can be created by *entanglement swapping* A Bell measurements on modes 2 and 4 entangles modes 1 and 4

Quantum relay

entangled

Long-distance entanglement can be created by *entanglement swapping* **but to succeed**, all links must work simultaneously.

 \rightarrow success probability still decreases exponentially with distance.

The role of memory

• But if we had quantum memory,

- entanglement in a link could be stored... until entanglement in other links has been created, too.
- Bell-measurement on adjacent quantum memories... will create the desired long-distance entanglement.
- Alice can teleport her photon to Bob

Quantum repeater

- This technology is called *quantum repeater*
 - Initial idea: H. Briegel et al., 1998
 - In application to EIT and quantum memory: L.M. Duan et al., 2001
- Quantum memory for light is essential for long-distance quantum communications.

By the way...

- Quantum memory for light is also useful in quantum computing
 - Photon makes an excellent qubit... but does not like to stay put
 - Any computer, quantum or classical, needs memory

ELECTROMAGNETICALLY INDUCED TRANSPARENCY

and memory for light

What is EIT?

Quantum interference effect in atoms with Λ -shaped level structure

What will happen to the signal field when we send it through an EIT medium?

Narrow transparency window on resonance.

• Light propagates through an otherwise opaque medium.

We can enormously reduce the group velocity

• Group velocity is proportional to the control field intensity

Quantum Information Science at the University of Calgary

EIT for quantum memory

- The idea
 - Turning the control field off will reduce the group velocity to zero
 - Quantum information contained in the pulse is stored in a collective atomic ground state superposition
 - Turning the control field back on will retrieve the pulse in the original quantum state

EIT for quantum memory

EIT in our lab

EIT-based memory: practical limitations

- EIT window not perfectly transparent
 → part of the pulse will be absorbed
- Memory lifetime limited by atoms colliding, drifting in and out the interaction region

Institute for

Quantum Information Scien

at the University of Calgar

Storage of squeezed vacuum The setup

Storage of squeezed vacuum The initial state

Storage of squeezed vacuum The retrieved state J. Appel et al., PRL 100, 093602 (2008)

Institute for

Ouantum Information

Quadrature noise

- Maximum squeezing: 0.21±0.04 dB
- **Squeezing observed in the retrieved state!**

EIT for quantum memory: state of the art

The "holy grail"

- Store and retrieve arbitrary states of light for unlimited time
- State after retrieval must be identical to initial

Existing work

- •L. Hau, 1999: slow light
- •M. Fleischauer, M. Lukin, 2000: original theoretical idea for light storage
- •M. Lukin, D. Wadsworth et al., 2001: storage and retrieval of a classical state
- •A. Kuzmich et al., M. Lukin et al., 2005: storage and retrieval of single photons
- •M. Kozuma et al., A. Lvovsky et al., 2007: memory for squeezed vacuum

Existing benchmarks

- •Memory lifetime: up to milliseconds in rubidium, up to seconds in solids
- •Memory efficiency: up to 50 % in rubidium, lower for solids
- Things get much worse when we attempt to store nonclassical states of light

Quantum Information Scie

QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements

An optical C-NOT gate

• What we need

An optical C-NOT gate

• Nonlinear phase shift

 $\begin{aligned} |0\rangle|0\rangle &\rightarrow |0\rangle|0\rangle \\ |0\rangle|1\rangle &\rightarrow |0\rangle|1\rangle \\ |1\rangle|0\rangle &\rightarrow |1\rangle|0\rangle \\ |1\rangle|1\rangle &\rightarrow -|1\rangle|1\rangle \end{aligned}$

• Problem

• No materials that exhibit optical nonlinearity at the single-photon intensity level

QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements

Nonlinear optics with EIT

• Basic idea: exploit steep dispersion curve to produce large cross-phase modulation

Small change in 2-photon detuning
 → Large change in transmitted signal phase

N-type scheme

• EIT on signal field due to $|1\rangle|2\rangle|3\rangle$

1 Schmidt, Imamoglu. Opt. Lett. 23, pages 1936-1939 (1996)

N-scheme

Schmidt, Imamoglu. Opt. Lett. 23, 1936 (1996)

 $|3\rangle$

N-scheme

[continued]

Problem with N-scheme:

- Only signal field experiences slowdown.
- For pulses, this is a severe limitation.
- Solution:
 - Slow down induction pulse via another EIT system
 - Lukin, Imamoglu (2001): use another atomic species (e.g. ⁸⁵Rb)
 - Wang, Marzlin, Sanders (2006): use double EIT in the same atom

Institute for

Quantum Information Scien

at the University of Calga

QUANTUM COMPUTATION GATES

1. With EIT

2. Using conditional measurements

Non-deterministic phase gate: implementation with the beam splitter

General beam splitter transformation

$$|m,n\rangle \rightarrow \sum_{j,k=0}^{m,n} \sqrt{\frac{(j+k)!(m+n-j-k)!}{m!n!}} \binom{m}{j} \binom{n}{k} (-1)^k t^{n+j-k} r^{m-j+k} |m+n-j-k,j+k\rangle$$

Entangles input modes Entanglement very complicated Conditional measurement and/or postselection are required to implement computation gates

⇒ Linear-optical quantum computing is non-deterministic

Original idea: E. Knill, R. Laflamme, and G. J.Milburn, Nature 409, 46 (2001). cience

Non-deterministic phase gate: implementation with the beam splitter

• Beam splitter with reflectivity 1/3

$$(r = \sqrt{\frac{1}{3}}, t = \sqrt{\frac{2}{3}})$$

- Postselect on events in which the number of photons in the reflected channel is the same as that in the corresponding incident channel
- Neglect all other events

$$\begin{array}{l} |0,0\rangle \rightarrow |0,0\rangle \\ |1,0\rangle \rightarrow \sqrt{\frac{1}{3}}|1,0\rangle \\ |0,1\rangle \rightarrow -\sqrt{\frac{1}{3}}|0,1\rangle \\ |1,1\rangle \rightarrow \frac{1}{3}|1,1\rangle \end{array}$$
Insert π phase shift into the right channel
$$\begin{array}{l} |0,0\rangle \rightarrow |0,0\rangle \\ |1,0\rangle \rightarrow \sqrt{\frac{1}{3}}|1,0\rangle \\ |0,1\rangle \rightarrow \sqrt{\frac{1}{3}}|0,1\rangle \\ |1,1\rangle \rightarrow -\frac{1}{3}|1,1\rangle \end{array}$$

Phase gate implemented!

Non-deterministic (probability = 1/3 per photon) Quantum Information Sc

 \rightarrow Need to attenuate horizontal photons, too

Non-deterministic phase gate [continued]

• Full scheme

- Properties
 - Works conditioned on detecting 1 photon in each output
 - Works with probability 1/9
 - Would be useful for quantum computing if we had non-demolition detection of photons

Non-deterministic phase gate Experimental implementation

- The setup
 - Partially-polarizing beam splitters used to simplify mode-matching
 - Operation of the gate as a Bell-state analyzer verified

N. K. Langford et al., Phys. Rev. Lett. 95, 210504 (2005)
N. Kiesel et al., Phys. Rev. Lett. 95, 210505 (2005)
R. Okamoto et al., Phys. Rev. Lett. 95, 210505 (2005)

Another example: Conditional preparation of multi-photon entanglement

- **Conditioned on 4-photon coincidence** (postselected preparation)
 - Start from 2 pairs $|HV\rangle |VH\rangle$
 - Photon that fires T comes from "first pair" 2
 - \Rightarrow first pair must be $|HV\rangle$
 - \Rightarrow second pair must be $|VH\rangle$
 - POI • Photons transmitted and reflected from BS must be of opposite polarizations
 - Photons detected by D_1 and D_2 must be of the same polarization
 - The state incident on D_1 , D_2 and D_3 is either $|HHV\rangle$ or $|VVH\rangle$
 - These possibilities are indistinguishable

 \Rightarrow The output state is a coherent superposition

We know the state has been generated only after it's detected

BS

• Funding:

- CIAR
- NSERC
- AIF
- CFI
- QuantumWorks

Ph.D. positions available

http://qis.ucalgary.ca/quantech/

