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Course Structure 
1.

 
Measuring quantum states of light

2.
 

Making quantum states of light

3.
 

Quantum repeaters
4.

 
Quantum memory for light

5.
 

Quantum gates with photons



MOTIVATION



Photon as a qubit

• Among many physical media suitable for quantum computation…
cavity QED trapped ions nonlinear optics

quantum dots
NMR linear optics

• …why study the optical one?



Photon as a qubit 
(…continued)

• Because:
• A photon makes an intuitive qubit
• A photon is a good carrier of quantum information
• Virtually no decoherence
• Efficient gate operations (Knill-Laflamme-Milburn)

• Challenges:
• Synthesis,
• Characterization
• Storage
• Computational gates
of quantum optical states
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probability of horizontal   
polarization

How to characterize a quantum state?
A single measurement won’t do
Repeated, identical measurements → projection onto only one basis
Need many sets of measurements in different bases (quantum tomography)
Generally, d 2 – 1 bases are required 
for full tomography of a d-dimensional system

Example: a polarization qubit
(photon in a superposition of horizontal and vertical polarization states)
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Quantum measurement 
of the Bell state 
• Measuring an entangled state

• Perfect anticorrelation:
• If Alice observes H, Bob observes V
• If Alice observes V, Bob observes H

• This measurement is insufficient. 
The state can be                            with any ϕ

 
or even an unentangled mixture

• To determine ϕ, turn polarizers

 

45°

Then
remains the same
changes

⇒ We can verify that the state is indeed 

Ψ− = −HV VH

polarizing
beam splitter

Alice

Bob

type II
down-converter

HV e VHi+ ϕ

H H V→ ′ + ′b g / 2
V H V→ ′ − ′b g / 2

HV HV VH VH+

HV VH H V V H− → −' ' ' '
HV VH H H V V+ → −' ' ' '

Ψ−
Problem. Verify this.



Quantum tomography 
by photon counting

• Example:
• Tomography of a two-mode, partially entangled state

• Measurements complete. What next?
• Need to determine the density matrix from measurement results
• Likelihood function

(where i is the number of the measurement, ρ

 

is the density matrix)
• Likelihood-maximization algorithm

Finds, among all possible density matrices, the one that maximized L

L( $ ) ( $ )ρ ρ= ∏pr
measurements

i

A. G. White et al., PRL 83, 3103 (1999)



Quantum tomography 
by photon counting

• Example
• Tomography of a two-mode, partially entangled state

• This looks good, but…
• There’s implicit assumption there is always a photon on each channel
• Actually, the down-converter does not generate a photon pair "on demand"

 
→ this characterization is postselected based on detecting a photon pair 
→ the actual two-mode state is mostly vacuum

• the photon-counting based characterization technique and the postselection

 issue are common in modern experiments

A. G. White et al., PRL 83, 3103 (1999)



Tomography by photon counting 
Drawbacks
• Polarization qubit

optical Hilbert space

qubit space

α β α βH V H V H V+ = +1 0 0 1, , ...

• Traditional approach neglects non-qubit terms
→ incomplete state characterization
→ incorrect evaluation of experimental quantum algorithms
→ postselection ⇒ loss of scalability

+ + +γ δ ε0 0 1 1 2 3H V H V H V, , , ... ?

• New technology: number discriminating detector
• “Regular” photon detector: “click” or “no click”
• Number discriminating detector: can determine the number of photons
• Still, no phase information

Problem. suppose you have many highly-efficient “regular” detectors. 
Can you use them to construct a discriminating detector?
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Phase-space probability distribution

• Classical mechanics
• phase space picture 

of harmonic oscillator

X

P

• many oscillators 
→ probability distribution

X

pr( )X
W X P( , )

pr( )P
integration

W X, P( )

XP

pr( )X
pr( )P



Wigner Function

• Quantum mechanics
 

→ Uncertainty principle
 → phase space probability density cannot be defined 

→ only individual quadratures can be measured
• Phase-space “quasi”probability

 

density (Wigner

 

function)

 
→ projection onto each quadrature determines its probability density

• Properties 
→ completely describes a quantum state 
→ real, normalized 
→ not necessarily positive definite

W X, P( )

XP

pr( )X
pr( )P

$ ( $ $ )P a ai= − +1
2

$ $ $X a a
=

+ +

2

E.P. Wigner, Phys. Rev. 40, 749 (1932)
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Examples of Wigner functions
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Problem. Calculate 
these Wigner functions



W X,P( )
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Homodyne tomography

• Phase-sensitive measurements of electric field

 
→ cannot be done directly 
→ use interference with local oscillator

• Measure subtraction photocurrent

Assume                     so the local 
oscillator can be treated classically
⇒ Subtraction photocurrent 

∝

 

signal field (= Xθ

 

)
• Many measurements 

→ histogram pr(Xθ

 

)

 
(“marginal distribution”)

• Set of pr(Xθ

 

) for all θ

 
→ Wigner function W(X, P) (via inverse Radon transform) 
→ Density matrix       (via likelihood maximization)$ρ
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Example 1: squeezed states

noise 
traces

quadrature 
distributions

reconstructed 
Wigner functions

[G. Breitenbach, S. Schiller & J. Mlynek, Nature 387, 471 (1997)]



Example 2: 
Single-photon Fock state tomography

vacuum Fock

n10 2 3 4 5 6 7 8 9

0.1
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X
P 1

1 2

2

X

P

• Quadrature noise:

 raw data, 45000 pts

•Density matrix

 (diagonal elements)

• Wigner function reconstruction

Efficiency: 62%
Wigner

 

function is negative 
in the origin of the phase space

A. I. Lvovsky et al., PRL 87, 050402 (2001)



Summary to Part 1 
2 methods of measuring quantum states of light
• Photon counting

• Useful for characterizing multiple dual-rate qubits
• Drawbacks of existing detectors

• poor quantum efficiency
• poor photon number resolving capability

• Projects optical Hilbert space onto the qubit space
⇒ Incomplete reconstruction

• Homodyne tomography
• No photon number sensitivity required
• High quantum efficiency
• Complete characterization of the optical state in the local oscillator mode(s)
• More difficult

• Requires mode matching with the local oscillator
• Requires more measurements

W X,P( )

X
P

P X( )

http://opto.perkinelmer.com/products/catalog/familylisting/family243.php3
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How to generate a photon?

• Attenuate a laser beam? 
• Use a pulsed laser → attenuate to the one-photon level

Output will be stochastic (Poissonian

 

statistics): sometimes zero photons, 
sometimes more than one
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How to generate a photon?  (…continued)

• Microscopic system (e.g. atom)
• Excite using a laser
• After a while, the system will spontaneously emit a photon

Only one photon emitted at a time
System is hard to prepare and keep stable

• Nitrogen vacancies in diamond
• A single structure defect in a crystal
• Similar to a single atom
• When excited, cannot emit more than one photon at a time 



How to generate a photon?  (…continued)

• Mesoscopic
 

system (e.g. a quantum dot)
• Microscopic elements “talk” to each other 

→ One excited element 
will prevent excitation of the others

Only one photon emitted at a time
System is easier to handle than microscopic

• Quantum dot photon sources
• Self-assembled

⇒ need to pick a good dot to work with
• Operate at cryogenic temperatures
• Excited electrically or optically
• Pico-or femtosecond pulse width
• Difficult to make transform-limited

→ verification by the Hong-Ou-Mandel dip
• Difficult to collect

→ microcavities

[Reproduced from 
http://www.stanford.edu/group/yamamotogroup/]



How to generate a photon?  (…continued)

[Reproduced from J. Laurat et al., 
Optics Express 14, 6912 (2006)]

g

• Duan-Lukin-Cirac-Zoller
 

method [Nature 414, 413 (2001)]

• Step 1: “Writing”
• Prepare all atoms in the       state
• Excite the                 transition with a weak laser pulse
• Observe Raman scattering of a single photon on                  transition
• “Single atom” (spin wave) now stored in

• Step 2: “Reading”
• Excite the                 transition
• Single Photon will 

be emitted on the

• Comments
• Up to 50 % efficiency 

achieved
• Narrowband photon 

→ suitable for 
experiments with atoms

e s→
g e→

s

s e→

e g→
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Elements of nonlinear optics

• Linear medium: 
polarization is proportional to the EM field

• Nonlinear medium: 

• If                 then   
→ second harmonic generation

• If two fields are present (ω1

 

and ω2

 

)  then 
→ sum, difference frequency generation

• These are classical effects
• Quantum interpretation of second harmonic generation:

• Two photons “unite” to form a single photon of higher energy

P E E Ei ij j ijk j k∝ + +χ χ( ) ( ) ...1 2

E ei t∝ ω P ei
i t∝ + +... ...2 ω

P e ei
i t i t∝ + + ++ −... ...( ) ( )ω ω ω ω1 2 1 2



Parametric down-conversion

H E P E E Ei j k∝ ∝∑
r r

$ ... $ $ $H a a a∝ + +1 2 3
† † H.c.+ ...

Ψ Ψ( ) ( ) $ $ $ $
$t e iHt iga a a tiHt= ≈ + = +0 0 0 0 01 2 3

† †

• Quantum description
• Interaction energy/Hamiltonian: 
• In the quantum form: 
• Evolution (assume weak perturbation):

• Interpretation: 
• a photon of wave 1 ("pump") can split into two photons of waves 2 and 3. 
• may occur spontaneously: 

waves 2 and 3 need not be present
• Purely quantum effect
• Energy and momentum conservation  

(phase matching) must hold. 
• Main property: photons are 

always born in pairs.

[image by J. Lundeen from Wikipedia]



Type I and Type II down-conversion

• Type I
• Generated photons are of the same polarization
• Useful for squeezing, preparation of heralded single photons,

 

etc.

• Type II
• Photons have different polarizations 
• Emitted along two cones
• Polarization-entangled biphoton

 

at the intersection of cones
• Basis for many modern experiments

HV e VHi+ ϕ

[Reproduced from http://scotty.quantum.physik.uni-muenchen.de ]



MAKING 
QUANTUM STATES OF LIGHT

1.
 

Photons
2.

 
Biphotons

3.
 

Squeezed states
4.

 
Beam splitter

5.
 

Conditional measurements



What is squeezed light?

• Vacuum state: light is off
• Quantum noise phase-independent
• Related to shot noise in electronics

• Squeezed vacuum state
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(uncertainty principle!)

• Applications
• Precision interferometric 

meaurements (e.g. gravitation wave 
detection)

• Major quantum information 
primitive
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Vacuum state wave function

X-squeezed state wave function
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Problem. Normalize the 
above wave functions



How to produce squeezing?
• Non-degenerate parametric down-conversion

• Photons are different in direction, frequency, polarization
• Used e.g. to create entanglement

• Degenerate parametric down-conversion
• Photons are identical
• If we can generate enough pairs, output will be squeezed
• Use optical cavity to enhance nonlinearity

Problem. Show that the 
state                 is squeezed 
for some values of β

0 2+ β



Generation of squeezed states

• Fully degenerate down-conversion 
⇒ Generated photons are identical: 
⇒ Hamiltonian becomes 

• Strong pump 
⇒ Can assume classical:                . Assume α

 

real. 
⇒ Cannot use one-pair approximation

• Heisenberg evolution
• For field operators:

$ $ $ $ $ $H a a a a a∝ + → +1 2 3 1 2
2† † †H.c. H.c.d i

$ $a a2 3=

$a i1 → α

$& [ $ , $ ] $a i H a a2 2 22= = α †

$& $a a2 22† = α
• For field quadratures:

$& $ $ ( ) $ ( )X X X t e Xt= ⇒ =2 02α α

$& $ $ ( ) $ ( )P P P t e Pt= − ⇒ = −2 02α α

• P shrinks, X expands → squeezed vacuum!
• Unlike biphotons, squeezed states are “on demand”

Problem. Repeat this 
calculation for a complex α



THE END

http://iqis.org/quantech
PhD student positions available!
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