QUANTUM INFORMATION with light and atoms

Lecture 1

Alex Lvovsky

Course Structure

- 1. Measuring quantum states of light
- 2. Making quantum states of light
- 3. Quantum repeaters
- 4. Quantum memory for light
- 5. Quantum gates with photons

MOTIVATION

Photon as a qubit

• Among many physical media suitable for quantum computation...

• ...why study the optical one?

Photon as a qubit (...continued)

- Because:
 - A photon makes an intuitive qubit
 - A photon is a good carrier of quantum information
 - Virtually no decoherence
 - Efficient gate operations (Knill-Laflamme-Milburn)
- Challenges:
 - Synthesis,
 - Characterization
 - Storage
 - Computational gates

of quantum optical states

MEASURING QUANTUM STATES OF LIGHT

- 1. By photon counting
- 2. By homodyne tomography

MEASURING THE QUANTUM STATE OF LIGHT

1. By photon counting

2. By homodyne tomography

How to characterize a quantum state?

- **A single measurement won't do**
- \blacksquare Repeated, identical measurements \rightarrow projection onto only one basis
- Need many sets of measurements in different bases (quantum tomography)

Generally, $d^2 - 1$ bases are required for full tomography of a *d*-dimensional system

Example: a polarization qubit

(photon in a superposition of horizontal and vertical polarization states)

Quantum measurement of the Bell state

• Measuring an entangled state $|\Psi^angle$ = |HV angle - |VH angle

Perfect anticorrelation:

- If Alice observes H, Bob observes V
- If Alice observes V, Bob observes H

• This measurement is insufficient. The state can be $|HV\rangle + e^{i\varphi}|VH\rangle$ with any φ or even an unentangled mixture $|HV\rangle\langle HV| + |VH\rangle\langle VH|$

- To determine ϕ , turn polarizers 45°

$$|H\rangle \rightarrow (|H'\rangle + |V'\rangle) / \sqrt{2} |V\rangle \rightarrow (|H'\rangle - |V'\rangle) / \sqrt{2}$$

Then

 $|HV\rangle - |VH\rangle \rightarrow |H'V'\rangle - |V'H'\rangle$ remains the same

 $|HV\rangle + |VH\rangle \rightarrow |H'H'\rangle - |V'V'\rangle$ changes

 \Rightarrow We can verify that the state is indeed $|\Psi^{-}\rangle$

Quantum tomography by photon counting

• Example:

A. G. White et al., PRL 83, 3103 (1999)

• Tomography of a two-mode, partially entangled state

- Measurements complete. What next?
 - Need to determine the density matrix from measurement results
 - Likelihood function

$$\mathfrak{L}(\hat{\rho}) = \prod \mathrm{pr}_i(\hat{\rho})$$

measurements

(where *i* is the number of the measurement, ρ is the density matrix)

• Likelihood-maximization algorithm

Finds, among all possible density matrices, the one that maximized \mathfrak{L}

Quantum tomography by photon counting

• Example

A. G. White et al., PRL 83, 3103 (1999)

• Tomography of a two-mode, partially entangled state

• This looks good, but...

- There's implicit assumption there is always a photon on each channel
- Actually, the down-converter does not generate a photon pair "on demand"
 → this characterization is postselected based on detecting a photon pair
 → the actual two-mode state is mostly vacuum
- the photon-counting based characterization technique and the postselection issue are common in modern experiments

Tomography by photon counting Drawbacks

Polarization qubit

$$\alpha |H\rangle + \beta |V\rangle = \alpha |1_H, 0_V\rangle + \beta |0_H, 1_V\rangle \dots$$

Traditional approach neglects non-qubit terms

 $+\gamma |0_{H},0_{V}\rangle + \delta |1_{H},1_{V}\rangle + \varepsilon |2_{H},3_{V}\rangle \dots$

- \rightarrow incomplete state characterization
- \rightarrow incorrect evaluation of experimental quantum algorithms
- \rightarrow postselection \Rightarrow loss of scalability
- New technology: number discriminating detector
 - "Regular" photon detector: "click" or "no click"
 - Number discriminating detector: can determine the number of photons
 - Still, no phase information

Problem. suppose you have many highly-efficient "regular" detectors. Can you use them to construct a discriminating detector?

Science

MEASURING THE QUANTUM STATE OF LIGHT

1. By photon counting

2. By homodyne tomography

Phase-space probability distribution

Classical mechanics

• phase space picture of harmonic oscillator

many oscillators
 → probability distribution

Wigner Function

- Quantum mechanics \rightarrow Uncertainty principle
 - \rightarrow phase space probability density cannot be defined \rightarrow only individual quadratures can be measured
- Phase-space "quasi" probability density (Wigner function)
 - \rightarrow projection onto each quadrature determines its probability density

Examples of Wigner functions

Homodyne tomography

Phase-sensitive measurements of electric field

 → cannot be done directly
 → use interference with local oscillator

• Measure subtraction photocurrent

$$I_{-} = \left| \frac{E_{LO} + E_{s}}{\sqrt{2}} \right|^{2} - \left| \frac{E_{LO} - E_{s}}{\sqrt{2}} \right|^{2} = 2E_{LO}E_{s}$$

Assume $|E_{LO}| >> |E_s|$ so the local oscillator can be treated classically

- $\Rightarrow \text{Subtraction photocurrent} \\ \propto \text{ signal field } (= X_{\theta})$
- Many measurements \rightarrow histogram pr(X_{θ}) ("marginal distribution")
- Set of $pr(X_{\theta})$ for all θ

→ Wigner function W(X, P) (via inverse Radon transform) → Density matrix $\hat{\rho}$ (via likelihood maximization)

Example 1: squeezed states

Example 2: Single-photon Fock state tomography

• Quadrature noise: raw data, 45000 pts

vacuum Fock

•Density matrix (diagonal elements)

A. I. Lvovsky et al., PRL 87, 050402 (2001)

• Wigner function reconstruction

Efficiency: 62% Wigner function is negative in the origin of the phase space

Summary to Part 1

2 methods of measuring quantum states of light

Photon counting

- Useful for characterizing multiple dual-rate qubits
- Drawbacks of existing detectors
 - poor quantum efficiency
 - poor photon number resolving capability
- Projects optical Hilbert space onto the qubit space
 - \Rightarrow Incomplete reconstruction

Homodyne tomography

- No photon number sensitivity required
- High quantum efficiency
- Complete characterization of the optical state in the local oscillator mode(s)
- More difficult
 - Requires mode matching with the local oscillator
 - Requires more measurements

MAKING QUANTUM STATES OF LIGHT

- 1. Photons
- 2. Biphotons
- 3. Squeezed states
- 4. Beam splitter
- 5. Conditional measurements

MAKING QUANTUM STATES OF LIGHT

- 1. Photons
- 2. Biphotons
- 3. Squeezed states
- 4. Beam splitter
- 5. Conditional measurements

How to generate a photon?

- Attenuate a laser beam?
 - Use a pulsed laser \rightarrow attenuate to the one-photon level

Output will be stochastic (Poissonian statistics): sometimes zero photons, sometimes more than one

How to generate a photon? (...continued)

- Microscopic system (e.g. atom)
 - Excite using a laser
 - After a while, the system will spontaneously emit a photon

Only one photon emitted at a time

- System is hard to prepare and keep stable
- Nitrogen vacancies in diamond
 - A single structure defect in a crystal
 - Similar to a single atom
 - When excited, cannot emit more than one photon at a time

Ouantum Informat

How to generate a photon? (...continued)

• Mesoscopic system (e.g. a quantum dot)

- Microscopic elements "talk" to each other
 - → One excited element will prevent excitation of the others
- Only one photon emitted at a time
- System is easier to handle than microscopic

Quantum dot photon sources

- Self-assembled
 - \Rightarrow need to pick a good dot to work with
- Operate at cryogenic temperatures
- Excited electrically or optically
- Pico-or femtosecond pulse width
- Difficult to make transform-limited
 → verification by the Hong-Ou-Mandel dip
- Difficult to collect
 - \rightarrow microcavities

[Reproduced from http://www.stanford.edu/group/yamamotogroup/]

How to generate a photon? (...continued)

• **Duan-Lukin-Cirac-Zoller method** [Nature 414, 413 (2001)]

- Step 1: "Writing"
 - Prepare all atoms in the |g
 angle state
 - Excite the $|g\rangle \rightarrow |e\rangle$ transition with a weak laser pulse
 - Observe Raman scattering of a single photon on $|e\rangle \rightarrow |s\rangle$ transition
 - "Single atom" (spin wave) now stored in |s
 angle
- Step 2: "Reading"
 - Excite the $|s\rangle \rightarrow |e\rangle$ transition
 - Single Photon will be emitted on the $|e\rangle \rightarrow |g\rangle$

• Comments

- Up to 50 % efficiency achieved
- Narrowband photon
 - \rightarrow suitable for

experiments with atoms

[Reproduced from J. Laurat *et al.,* Optics Express **14**, 6912 (2006)]

Atoms

MAKING QUANTUM STATES OF LIGHT

- 1. Photons
- 2. Biphotons
- 3. Squeezed states
- 4. Beam splitter
- 5. Conditional measurements

Elements of nonlinear optics

• Linear medium:

polarization is proportional to the EM field

- Nonlinear medium:
 - $P_i \propto \chi_{ij}^{(1)} E_j + \chi_{ijk}^{(2)} E_j E_k + \dots$
 - If $E \propto e^{i\omega t}$ then $P_i \propto \ldots + e^{2i\omega t} + \ldots$
 - \rightarrow second harmonic generation
 - If two fields are present (ω_1 and ω_2) then $P_i \propto ... + e^{i(\omega_1 + \omega_2)t} + e^{i(\omega_1 \omega_2)t} + ...$ \rightarrow sum, difference frequency generation
 - These are classical effects
 - Quantum interpretation of second harmonic generation:
 - Two photons "unite" to form a single photon of higher energy

Parametric down-conversion

• Quantum description

- Interaction energy/Hamiltonian: $H \propto \vec{E} \vec{P} \propto \sum E_i E_j E_k$
- In the quantum form: $\hat{H} \propto ... + \hat{a}_1 \hat{a}_2^{\dagger} \hat{a}_3^{\dagger} + \text{H.c.} + ...$
- Evolution (assume weak perturbation): $|\Psi(t)\rangle = e^{i\hat{H}t}|\Psi(0)\rangle \approx |0\rangle + i\hat{H}t|0\rangle = |0\rangle + ig\hat{a}_1\hat{a}_2^{\dagger}\hat{a}_3^{\dagger}t|0\rangle$

• Interpretation:

• a photon of wave 1 ("pump") can split into two photons of waves 2 and 3.

Nonlinear

 $\chi^{(2)}$ crystal

- may occur spontaneously: waves 2 and 3 need not be present
- Purely quantum effect
- Energy and momentum conservation (phase matching) must hold.
- Main property: photons are always born in pairs.

[image by J. Lundeen from Wikipedia] $\phi_{PUMP} = \phi_s + \phi_i$

Type I and Type II down-conversion

- Type I
 - Generated photons are of the same polarization
 - Useful for squeezing, preparation of heralded single photons, etc.
- Type II
 - Photons have different polarizations
 - Emitted along two cones
 - Polarization-entangled biphoton $|HV\rangle + e^{i\varphi}|VH\rangle$ at the intersection of cones
 - Basis for many modern experiments

MAKING QUANTUM STATES OF LIGHT

- 1. Photons
- 2. Biphotons
- 3. Squeezed states
- 4. Beam splitter
- 5. Conditional measurements

What is squeezed light?

• Vacuum state: light is off

- Quantum noise phase-independent
- Related to shot noise in electronics

• Squeezed vacuum state

- Quantum noise phase-dependent
- At some phases, noise *below* the vacuum level
- At other phases, excessive noise (uncertainty principle!)

Applications

- Precision interferometric meaurements (e.g. gravitation wave detection)
- Major quantum information primitive

What is squeezed light?

• Vacuum state: light is off

- Quantum noise phase-independent
- Related to shot noise in electronics

Squeezed vacuum state

- Quantum noise phase-dependent
- At some phases, noise *below* the vacuum level
- At other phases, excessive noise (uncertainty principle!)

Applications

- Precision interferometric meaurements (e.g. gravitation wave detection)
- Major quantum information primitive

Vacuum state wave function

X-squeezed state wave function

Problem. Normalize the above wave functions

How to produce squeezing?

- Non-degenerate parametric <u>down-conversion</u>
 - Photons are different in direction, frequency, polarization
 - Used e.g. to create entanglement

- Degenerate parametric down-conversion
 - Photons are identical
 - If we can generate enough pairs, output will be squeezed
 - Use optical cavity to enhance nonlinearity

Problem. Show that the state $|0\rangle + \beta |2\rangle$ is squeezed for some values of β

Generation of squeezed states

- Fully degenerate down-conversion
 - \Rightarrow Generated photons are identical: $\hat{a}_2 = \hat{a}_3$

 \Rightarrow Hamiltonian becomes $\hat{H} \propto \hat{a}_1 \hat{a}_2^{\dagger} \hat{a}_3^{\dagger} + \text{H.c.} \rightarrow \hat{a}_1 (\hat{a}_2^{\dagger})^2 + \text{H.c.}$

Strong pump

 \Rightarrow Can assume classical: $\hat{a}_1 \rightarrow i \alpha$. Assume α real.

- ⇒ Cannot use one-pair approximation
- Heisenberg evolution
 - For field operators: $\dot{a}_2 = i[\hat{H}, \hat{a}_2] = 2\alpha \hat{a}_2^{\dagger}$ $\dot{a}_2^{\dagger} = 2\alpha \hat{a}_2$
 - For field quadratures:

 $\dot{\hat{X}} = 2\alpha \hat{X} \implies \hat{X}(t) = e^{2\alpha t} \hat{X}(0)$ $\dot{\hat{P}} = -2\alpha \hat{P} \implies \hat{P}(t) = e^{-2\alpha t} \hat{P}(0)$

Problem. Repeat this calculation for a complex $\boldsymbol{\alpha}$

- *P* shrinks, *X* expands → squeezed vacuum!
- Unlike biphotons, squeezed states are "on demand"

http://iqis.org/quantech PhD student positions available!

