

Dynamics of homogenization: Partial Swap

Transformation satisfying the conditions of homogenization form a one-parametric family

 $U(\eta) = \cos \eta \mathbf{1} + i \sin \eta S$

where S is the swap operator acting as

$$S\varrho \otimes \xi S^{\dagger} = \xi \otimes \varrho$$

The partial swap is the only transformation satisfying the homogenization conditions

Dynamics of homogenization: Partial Swap

Let $\varrho_{S}^{(0)} = \frac{1}{2}\mathbf{1} + \vec{w}.\vec{\sigma}$ with three-dimensional real vector $|\vec{w}| \leq 1/2$ Defining $\xi = \frac{1}{2}\mathbf{1} + \vec{t}.\vec{\sigma}$ we find that after n steps the density operator reads $\varrho_{S}^{(n)} \equiv T_{\xi}^{n}[\varrho_{S}^{(0)}] = \frac{1}{2}\mathbf{1} + \left[(1 - c^{2n})\vec{t} + \mathbf{T}_{\xi}^{n}\vec{w}\right].\vec{\sigma}$ where $s := \sin \eta$ and $c := \cos \eta$. where T_{ξ} is a matrix acting on a four-dimensional vector $(1, \vec{w})$ $T_{\xi} = \begin{pmatrix} 1 & \vec{0} \\ \vec{t} & \mathbf{T}_{\xi} \end{pmatrix}$ $\mathbf{T}_{\xi}\vec{w} = c^{2}\vec{w} - 2cs\vec{t} \times \vec{w}$

9/5/12

Where the information goes?

Initially we had $\varrho_S^{(0)}$ and N reservoir particles in state $~\xi~$ For large $N,~\delta\to 0~$ and $s\to 0~$ all <code>N+1</code> particles are in the state $\xi~$ Moreover all concurrencies vanish in the limit $~N\to\infty~$. Therefore, the entanglement between any pair of qubits is zero, i.e. $\lim_{N\to\infty}C_{jk}^{(N)}=~0~$

Also the entanglement between a given qubit and rest of the homogenized system, expressed in terms of the function $S_k(N)$ is zero.

Information cannot be lost. The process is UNITARY !

Master equation & dynamical semigroup

- Standard approach (e.g. Davies) continuous unitary evolution on extended system (system + reservoir)
- Reduced dynamics under various approximations dynamical continuous semigroup $\mathcal{E}_{t+s} = \mathcal{E}_t \mathcal{E}_s$
- From the conditions CP & continuity of \mathcal{E}_t -> dynamical semigroup can be written as $\mathcal{E}_t = e^{\Im t}$
- Evolution can be expressed via the generator $\frac{\partial \rho}{\partial t} = \Im[\rho]$
- · Lindblad master equation

$$\frac{\partial \rho}{\partial t} = -i[H,\rho] + \sum_{\alpha,\beta} c_{\alpha,\beta} \left(\left[\Lambda_{\alpha}, \rho \Lambda_{\beta} \right] + \left[\Lambda_{\alpha} \rho, \Lambda_{\beta} \right] \right)$$

From discrete to continuous semigroup

• Discrete dynamics $t_n = n\tau$ dynamical semigroup \mathcal{E}_{ξ}^k

We can derive continuous generalization - generator

$$\Im = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1/T_2 & -\Omega & 0 \\ 0 & \Omega & -1/T_2 & 0 \\ 2\omega/T_1 & 0 & 0 & -1/T_1 \end{pmatrix}$$

 $s = \sin \eta$ $c = \cos \eta$

 $\frac{T_1}{T_2} \ge \frac{1}{2}$

 $\Omega = \arctan(2\omega s/c)/\tau$ $1/T_1 = 2\ln(1/c)/\tau$ Decay time $1/T_2 = \ln\left[\left(c^2 + 4s^2\omega^2\right)/c\right]/\tau$ Decoherence time

- Dilution of quantum information via homogenization
- Universality & uniqueness of the partial swap operation
- Physical realization of contractive maps
- Reversibility and classical information
- Stochastic vs deterministic models
- Lindblad master equation
- · Still many open questions spin gases, stability of reservoirs

Related papers:

M.Ziman, P.Stelmachovic, V.Buzek, M.Hillery, V.Scarani, & N.Gisin, *Phys.Rev.A* 65,042105 (2002)] V.Scarani, M.Ziman, P.Stelmachovic, N.Gisin, & V.Buzek, *Phys. Rev. Lett.* 88, 097905 (2002). D.Nagaj, P.Stelmachovic, V.Buzek, & M.S.Kim, *Phys. Rev. A* 66, 062307 (2002) M.Ziman, P.Stelmachovic, & V.Buzek, *Open Sys. & Info Dyn.* 12, 81 (2005)

M.Ziman & V.Buzek, Phys. Rev. A 72, 022110 (2005)

M.Ziman & V.Buzek, quant-ph0508106 (2005).