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Motivation 

•  Information encoded in a state of a  quantum system 
•  The system interacts with its (large) environment  
•  The information “dilutes” into a reservoir (“equilibrates”) 
•  Where the original information goes ? 
•  Is the process reversible ? 
•  Can we recover diluted information ?  
•  Can we derive a master equation? 
•  What is the role of quantum correlations in reservoir? 

Quantum superposition: Qubit 

Superposition of basis vectors 

 

Amplitudes of probability 
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Physics of information transfer 

System S  - a single qubit initially 
prepared in the unknown state       

Reservoir R - composed of N qubits all 
prepared in the state    , which is arbitrary 
but same for all qubits. The state of 
reservoir is described by the density 
matrix        . 

Interaction U - a bipartite unitary 
operator. We assume that at each time 
step the system qubit interacts with just a 
single qubit from the reservoir. Moreover, 
the system qubit can interact with each of 
the reservoir qubits at most once. 

R.Alicki & K.Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physiscs (Springer, Berlin, 1987)                          

U.Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999) 

B.M.Terhal & D.P.diVincenzo, Phys. Rev. A 61, 022301 (2001).           

Before and after 

(0) ( 1)N N
Sρ ξ ξ⊗ ⊗ +⊗ →
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Dilution of quantum information 

Definition of quantum homogenizer 

•  Homogenization is the process in which 

            is some distance defined on 
the set of all qubit states           . At the 
output the homogenizer all qubits are 
approximately in a    vicinity of the 
state    . 

•  Covariance 

(0) ( 1)N N
Sρ ξ ξ⊗ ⊗ +⊗ →

No cloning theorem 
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Dynamics of homogenization:  
Partial Swap 

Transformation satisfying the conditions of homogenization form a one-parametric 
family 

where S is the swap operator acting as  

The partial swap is the only transformation satisfying 
the homogenization conditions 

Dynamics of homogenization:  
Partial Swap 

where                     and                       . 

Let                                 with three-dimensional real vector 

Defining                              we find that after n steps the density operator 
reads 

where      is a matrix acting on a 
four-dimensional vector             
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Maps Induced by Partial Swap 

Note that         represents a 
superoperator induced by a map 
U and the reservoir state    . 

Let                                              is a 
trace distance. For this distance 
the transformation       is 
contractive, i.e. for all states  

with 

Banach theorem implies that for all 
states         iterations       converge 
to a fixed point of       , i.e. to the 
state 

Homogenization of Gaussian states 

•  The signal is in a Gaussian state 
 
 
•  Reservoir states are Gaussian without displacement 
  

 
•  The signal after k interactions changes according to 
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•  Quantum homogenization – squeezed vacuum 

signal state reservoir state 

0 1 2 4 6 8 10 12 signal after                    interactions 

Homogenization of Gaussian states  

signal after             interactions 

signal state reservoir state 

14 16 20 26 33 44 many 

•  Quantum homogenization – squeezed vacuum 

Homogenization of Gaussian states 
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Entanglement due to 
homogenization 
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Measure of Entanglement:  Concurrence 

•  Measurement of entanglement: 
–  2-qubit concurrence, 

–  Von Neumann entropy, … 

in the standard basis 

    are the square roots of the 
eigenvalues of       in descending 
order 

For multipartite pure states                 
we can define the tangle that 
measures the entanglement 
between one qubit and the rest of 
the system 

where  
is state of k-th subsystem. 
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Entanglement: CKW inequality 

The CKW inequality  
V.Coffman, J.Kundu, W.K.Wootters, Phys.Rev.A 61,052306 
(2000)]  

Homogenized qubits saturate the CKW inequality 

Osborn generalization 

Where the information goes? 

Initially we had         and      reservoir particles in state  

For large     ,                  and                all N+1 particles are in the state  

Moreover all concurrencies vanish in the limit                   . Therefore, the 
entanglement between any pair of qubits is zero, i.e. 

 

Also the entanglement  between a given qubit and rest of the homogenized 
system, expressed in terms of the function              is zero. 

Information cannot be lost. The process is UNITARY ! 
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Information in correlations 

Pairwise entanglement  in the limit                     tends to zero.                                 

We have infinitely many infinitely small correlations between qubits and it 
seems that the required information is lost. But, if we sum up all the mutual 
concurrencies between all pairs of qubits we obtain a finite value 

The information about the initial state of the system is “hidden” in mutual 
correlations between qubits of the homogenized system. 

Can this information be recovered? 

Reversibility 

Perfect recovery can be performed only when the N + 1 qubits of the 
output state interact, via the inverse of the original partial-swap 
operation, in the  correct order. 

Classical information has to be 
kept in order to reverse quantum 
process 
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Stochastic homogenization I 

1cos( ) sin( )U i Sη η= +

11ρ

n
Example of a stochastic evolution of the 
system qubits S with 10 qubits in the reservoir.  

1 0 N⊗⊗

• Bipartite interaction : 

• Initial state of the system: 

• Reduced density matrix of the 
system after n interactions: 

( )n
Sρ

Deterministic vs stochastic 
homogenization: 

Spin Gas 

11ρ

n

1p =

Stochastic evolution of the system qubit S interacting 
with a reservoir of 100 qubits. The figure shows one 
particular stochastic evolution of the system S (red 
line), the deterministic evolution of the system S (blue 
line) and the average over 1000 different stochastic 
evolutions of the system S (pink  line) 

2
1 1

2

Np
N N

= =
+ +⎛ ⎞

⎜ ⎟
⎝ ⎠

• Step in deterministic model vs. step in 
stochastic model 

• Probability of interaction of the system 
S in: 

Ø Deterministic model: 

Ø Stochastic model: 

Necessity of rescaling 
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a reservoir  composed of 100 qubits                                                             

one particular stochastic evolution of the system S (red line) up to 500 interactions 

Reversibility 

11ρ

n

( )U P η=

• Recovery of the initial state 

( )†U P η= −

• “Spontaneous” recurrence - number of 
steps needed for 90% recovery is 910

Master equation & dynamical 
semigroup 

•  Standard approach (e.g. Davies) – continuous unitary 
evolution on extended system (system + reservoir)  

•  Reduced dynamics under various approximations – 
dynamical continuous semigroup   

•  From the conditions CP & continuity of       ->  dynamical 
semigroup can be written as 

•  Evolution can be expressed via the generator 
•  Lindblad master equation 
 

t s t sε ε ε+ =

tε
t

t eε ℑ=

[ ]
t
ρ ρ∂ = ℑ
∂

[ ] ( ),
,

, , ,i H c
t α β α β α β

α β

ρ ρ ρ ρ∂ ⎡ ⎤ ⎡ ⎤= − + Λ Λ + Λ Λ⎣ ⎦ ⎣ ⎦∂ ∑
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Discrete dynamical semigroup  

•  Any collision-like model determines one-parametric 
semigroup of CPTP maps 

•  Semigroup property 
•  Question: Can we introduce a continuous time 

version of this discrete dynamical semigroup? 

!"
k

( ) ( )( ) ( 1)k k k
S S j Sk S k SkTr U Uξε ρ ρ ρ ξ− +⎡ ⎤= = ⊗⎣ ⎦

k l k lε ε ε+ =

Discrete dynamical semigroup 

x

z

y( )1 0 1
2

+

0

( )1 0 1
2S

ψ = +

1
2 zIξ ω σ= +

25000N =

0.001η =
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From discrete to continuous 
semigroup 

•  Discrete dynamics                      dynamical semigroup 
•  We can derive continuous generalization - generator 

nt nτ= k
ξε
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Lindblad master equation 
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Qubit in correlated reservoir  

( ) 0 0 1 1j reservoirTr A Bρ ξ= + =

( )( )0 1 . .N N
reservoir A B h cρ ⊗ ⊗= +

( )0 0 1 1
N N

reservoir A Bρ ξ⊗ ⊗= + =

( ) 0reservoirS ρ =

( )reservoir jS NSρ =

Single-qubit reservoir DO 

Correlated reservoir 

 Reservoir with no correlations  

Bell pair in correlated reservoir I  

( ) ( 1)1/ 2Bell N N
Sρ ξ ξ⊗ ⊗ +⊗ → ⊗

1

0

1

0
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Bell pair in correlated reservoir II 

( )( )1 01 10 . .
2Bell h cρ = −

1
11
2

fρ =

2
fρ ξ=

Bell pair in correlated reservoir  
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Conclusions: Infodynamics 

•  Dilution of quantum information via homogenization 
•  Universality & uniqueness of the partial swap operation 
•  Physical realization of contractive maps 
•  Reversibility and classical information 
•  Stochastic vs deterministic models 
•  Lindblad master equation 
•  Still many open questions – spin gases, stability of reservoirs	
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